703DSS

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
These <scene name='71/716487/Binding_site/1'>binding sites</scene> are located between two bordering subunits, assembled from three alpha-helices of one subunit and three beta-strands from the other subunit. Such connection creates a binding pocket with a small, select number of residues from each subunit pointed into the binding pocket, as opposed to the large remainder of residues that are pointing away from the binding pocket<ref name="hassaine">Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.</ref>. This binding pocket shrinks around agonists, encapsulating them, and widens around antagonists, repulsing them.
These <scene name='71/716487/Binding_site/1'>binding sites</scene> are located between two bordering subunits, assembled from three alpha-helices of one subunit and three beta-strands from the other subunit. Such connection creates a binding pocket with a small, select number of residues from each subunit pointed into the binding pocket, as opposed to the large remainder of residues that are pointing away from the binding pocket<ref name="hassaine">Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.</ref>. This binding pocket shrinks around agonists, encapsulating them, and widens around antagonists, repulsing them.
-
The <scene name='71/716487/Default/5'>transmembrane region</scene> is within the C-terminus region, and contains four alpha-helical domains within it (M1-M4) that stretch the length of this inner, transmembrane area. These four alpha-helical domains conduct the channel openings via ion selectivity, depending on both charge and size<ref name="hassaine" />. M2, the porous domain, contains rings of charged amino acids at both its start and its end, accounting for M2’s main contribution to ion selectivity. The M3 and M4 alpha-helices create a large loop with one another, thus assembling the intracellular region <ref name="barnes" />.
+
The <scene name='71/716487/Default/5'>transmembrane region</scene> is within the C-terminus region, and contains four alpha-helical domains within it (M1-M4) that stretch the length of this inner, transmembrane area. These four alpha-helical domains conduct the channel openings via ion selectivity, depending on both charge and size<ref name="hassaine" />. M2, the porous domain, contains rings of charged amino acids at both its start and its end, accounting for M2’s main contribution to ion selectivity. The M3 and M4 alpha-helices create a large <scene name='71/716487/Default/6'> loop</scene> with one another, thus assembling the <scene name='71/716487/Default/7'>intracellular region</scene><ref name="barnes" />.
== Function ==
== Function ==

Revision as of 02:37, 7 December 2015

5-HT3a Receptor

5-HT3a receptor

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
  2. Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
  3. 3.0 3.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
  4. 4.0 4.1 Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
  5. Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
  6. Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
  7. 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
  8. 8.0 8.1 Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
  9. Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020

Proteopedia Page Contributors and Editors (what is this?)

Julio Soriagalvarro

Personal tools