1atu
From Proteopedia
Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1atu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1atu OCA], [http://www.ebi.ac.uk/pdbsum/1atu PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1atu RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
BACKGROUND: The protein alpha1-antitrypsin is a prototype member of the serpin (serine protease inhibitor) family and is known to inhibit the activity of neutrophil elastase in the lower respiratory tract. Members of this family undergo a large structural rearrangement upon binding to a target protease, involving cleavage of the reactive-site loop. This loop is then inserted into the main body of the enzyme following the opening of a central beta sheet, leading to stabilization of the structure. Random mutageneses of alpha1-antitrypsin identified various mutations that stabilize the native structure and retard the insertion of the reactive-site loop. Structural studies of these mutations may reveal the mechanism of the conformational change. RESULTS: We have determined the three-dimensional structure of an uncleaved alpha1-antitrypsin with seven such stabilizing mutations (hepta alpha1-antitrypsin) at 2.7 A resolution. From the comparison of the structure with other serpin structures, we found that hepta alpha1-antitrypsin is stabilized due to the release of various strains that exist in native wild type alpha1-antitrypsin, including unfavorable hydrophobic interactions in the central hydrophobic core. The reactive-site loop of hepta alpha1-antitrypsin is an extended strand, different from that of the previously determined structure of another uncleaved alpha1-antitrypsin, and indicates the inherent flexibility of the loop. CONCLUSIONS: The present structural study suggests that the uncleaved alpha1-antitrypsin has many folding defects which can be improved by mutations. These folding defects seem to be utilized in a coordinated fashion in the regulation of the conformational switch of alpha1-antitrypsin. Some of the defects, represented by the Phe51 region and possibly the Met374 and the Thr59 regions, are part of the sheet-opening mechanism. | BACKGROUND: The protein alpha1-antitrypsin is a prototype member of the serpin (serine protease inhibitor) family and is known to inhibit the activity of neutrophil elastase in the lower respiratory tract. Members of this family undergo a large structural rearrangement upon binding to a target protease, involving cleavage of the reactive-site loop. This loop is then inserted into the main body of the enzyme following the opening of a central beta sheet, leading to stabilization of the structure. Random mutageneses of alpha1-antitrypsin identified various mutations that stabilize the native structure and retard the insertion of the reactive-site loop. Structural studies of these mutations may reveal the mechanism of the conformational change. RESULTS: We have determined the three-dimensional structure of an uncleaved alpha1-antitrypsin with seven such stabilizing mutations (hepta alpha1-antitrypsin) at 2.7 A resolution. From the comparison of the structure with other serpin structures, we found that hepta alpha1-antitrypsin is stabilized due to the release of various strains that exist in native wild type alpha1-antitrypsin, including unfavorable hydrophobic interactions in the central hydrophobic core. The reactive-site loop of hepta alpha1-antitrypsin is an extended strand, different from that of the previously determined structure of another uncleaved alpha1-antitrypsin, and indicates the inherent flexibility of the loop. CONCLUSIONS: The present structural study suggests that the uncleaved alpha1-antitrypsin has many folding defects which can be improved by mutations. These folding defects seem to be utilized in a coordinated fashion in the regulation of the conformational switch of alpha1-antitrypsin. Some of the defects, represented by the Phe51 region and possibly the Met374 and the Thr59 regions, are part of the sheet-opening mechanism. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Emphysema OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107400 107400]], Emphysema-cirrhosis OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107400 107400]], Hemorrhagic diathesis due to antithrombin Pittsburgh OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107400 107400]], Pulmonary disease, chronic obstructive, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107400 107400]] | ||
==About this Structure== | ==About this Structure== | ||
Line 34: | Line 34: | ||
[[Category: stabilizing mutation]] | [[Category: stabilizing mutation]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 18:47:22 2008'' |
Revision as of 15:47, 30 March 2008
| |||||||
, resolution 2.7Å | |||||||
---|---|---|---|---|---|---|---|
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
UNCLEAVED ALPHA-1-ANTITRYPSIN
Overview
BACKGROUND: The protein alpha1-antitrypsin is a prototype member of the serpin (serine protease inhibitor) family and is known to inhibit the activity of neutrophil elastase in the lower respiratory tract. Members of this family undergo a large structural rearrangement upon binding to a target protease, involving cleavage of the reactive-site loop. This loop is then inserted into the main body of the enzyme following the opening of a central beta sheet, leading to stabilization of the structure. Random mutageneses of alpha1-antitrypsin identified various mutations that stabilize the native structure and retard the insertion of the reactive-site loop. Structural studies of these mutations may reveal the mechanism of the conformational change. RESULTS: We have determined the three-dimensional structure of an uncleaved alpha1-antitrypsin with seven such stabilizing mutations (hepta alpha1-antitrypsin) at 2.7 A resolution. From the comparison of the structure with other serpin structures, we found that hepta alpha1-antitrypsin is stabilized due to the release of various strains that exist in native wild type alpha1-antitrypsin, including unfavorable hydrophobic interactions in the central hydrophobic core. The reactive-site loop of hepta alpha1-antitrypsin is an extended strand, different from that of the previously determined structure of another uncleaved alpha1-antitrypsin, and indicates the inherent flexibility of the loop. CONCLUSIONS: The present structural study suggests that the uncleaved alpha1-antitrypsin has many folding defects which can be improved by mutations. These folding defects seem to be utilized in a coordinated fashion in the regulation of the conformational switch of alpha1-antitrypsin. Some of the defects, represented by the Phe51 region and possibly the Met374 and the Thr59 regions, are part of the sheet-opening mechanism.
About this Structure
1ATU is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
The native strains in the hydrophobic core and flexible reactive loop of a serine protease inhibitor: crystal structure of an uncleaved alpha1-antitrypsin at 2.7 A., Ryu SE, Choi HJ, Kwon KS, Lee KN, Yu MH, Structure. 1996 Oct 15;4(10):1181-92. PMID:8939743
Page seeded by OCA on Sun Mar 30 18:47:22 2008