5-ht3a receptor
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
== 5-HT3a Receptor== | == 5-HT3a Receptor== | ||
- | <StructureSection load='5-ht3a.pdb' size=' | + | <StructureSection load='5-ht3a.pdb' size='350' side='right' caption='5-HT3a receptor' scene='71/716487/Default/1'> |
- | 5-Hydroxytryptamine receptors, commonly known as 5-HT receptors, bind with the neurotransmitter serotonin. There are seven families of 5-HT receptors (5-HT1- 5-HT7), all of which function as G-protein-coupled receptors with the exception of the 5-HT3 group. This third group is part of the Cys-loop superfamily of ligand-gated ion channels<ref name="barnes" />. This article focuses specifically on the 5-HT3 receptors and how its structure contributes to its function. These functions include: altering anxiety level, influencing the vomiting reflex, increase of intestinal secretion and gastric motility. Although the exact structural model of the 5-HT3 receptor has not be definitively identified, through the process of homology modeling, using acetylcholine binding protein as a template, a structure has been inferred. | + | '''5-Hydroxytryptamine receptors''', commonly known as 5-HT receptors, bind with the neurotransmitter serotonin. There are seven families of 5-HT receptors (5-HT1- 5-HT7), all of which function as G-protein-coupled receptors with the exception of the 5-HT3 group. This third group is part of the Cys-loop superfamily of ligand-gated ion channels<ref name="barnes" />. This article focuses specifically on the 5-HT3 receptors and how its structure contributes to its function. These functions include: altering anxiety level, influencing the vomiting reflex, increase of intestinal secretion and gastric motility. Although the exact structural model of the 5-HT3 receptor has not be definitively identified, through the process of homology modeling, using acetylcholine binding protein as a template, a structure has been inferred. |
__FORCETOC__ | __FORCETOC__ | ||
Revision as of 13:35, 4 January 2016
5-HT3a Receptor
|
References
- ↑ 1.0 1.1 1.2 Barnes, N., Hales, T., Lummis, S., & Peters, J. (2009). The 5-HT3 receptor – the relationship between structure and function. Neuropharmacology, 273-284
- ↑ Perumal, R., & Mahesh, R. (2006). Synthesis and biological evaluation of a novel structural type of serotonin 5-HT3 receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 2769-2772.
- ↑ 3.0 3.1 Hassaine, G., Deluz, C., Grasso, L., Wyss, R., Tol, M., Hovius, R., . . . Nury, H. (2014). X-ray structure of the mouse serotonin 5-HT3 receptor. Nature, 276-281.
- ↑ 4.0 4.1 Gupta, D., Thangaraj, D., & Radhakrishnan, M. (2016). A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system. Behavioural Brain Research, 297, 41-50. doi:10.1016/j.bbr.2015.10.007
- ↑ Serotonin - Receptors and effects. (n.d.). Retrieved November 14, 2015, from http://www.pharmacorama.com/en/Sections/Serotonin_2_2.php
- ↑ Galligan, J. J. (2002). Ligand-gated ion channels in the enteric nervous system. Neurogastroenterology & Motility, 14(6), 611-623. doi: 10.1046/j.1365-2982.2002.00363.x
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 Thompson, A. J., & Lummis, S. C. R. (2006). 5-HT3 receptors. Current Pharmaceutical Design, 12(28), 3615–3630.
- ↑ 8.0 8.1 Morrison, T. R., Ricci, L. A., & Melloni, R. H., Jr. (2015). Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacology Biochemistry and Behavior, 134, 85-91. doi:10.1016/j.pbb.2015.05.001
- ↑ Hannon, J., & Hoyer, D. (2008). Research report: molecular biology of 5-HT receptors. Behavioural Brain Research, 195(Serotonin and cognition: mechanisms and applications), 198-213. doi:10.1016/j.bbr.2008.03.020