Sandbox Reserved 1128
From Proteopedia
(Difference between revisions)
| Line 28: | Line 28: | ||
=== Regulation of signal transduction pathways === | === Regulation of signal transduction pathways === | ||
| - | Some cellular pathways are affected by increase of the levels of oxidizing species below those inducing damage. Several of these pathways rely on transcriptional responses by activation of redox-sensitive transcription factors such as p53 or NF-κB in cytoplasm <ref>Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999 Dec 10;274(50):35809-15.</ref> <ref>Freemerman AJ, Gallegos A, Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res. 1999 Aug 15;59(16):4090-4.</ref>. These transcription factors are then activated by Trx in nucleus. This enzyme over-expressed can thus bind redox-sensitive transcription factors and activates them. That leads to modulate their DNA-binding activity on the promoter region of several genes. Transcription factors regulate in this way expression of genes which leads to cellular activation and regulates apoptosis <ref>Cassidy PB, Edes K, Nelson CC, Parsawar K, Fitzpatrick FA, Moos PJ. Thioredoxin reductase is required for the inactivation of tumor suppressor p53 and for apoptosis induced by endogenous electrophiles. Carcinogenesis. 2006 Dec;27(12):2538-49. Epub 2006 Jun 15.</ref>. For example, the tumour suppressor protein p53 stimulates reporter gene expression involved in cellular function such as mitosis or apoptosis. He is the guardian of the genome in prevent mutations by inducing expression of various genes as redox related genes, apoptosis related genes and many other <ref>Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300-5.</ref>. In addition, Trx can also regulate the transcription factor NF-κB which is involved in the control of several processes as cell growth, immune response or even inflammation <ref>Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):395-403.</ref>. | + | Some cellular pathways are affected by increase of the levels of oxidizing species below those inducing damage. Several of these pathways rely on transcriptional responses by activation of redox-sensitive transcription factors such as p53, AP-1 or NF-κB in cytoplasm <ref>Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999 Dec 10;274(50):35809-15.</ref> <ref>Freemerman AJ, Gallegos A, Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res. 1999 Aug 15;59(16):4090-4.</ref>. These transcription factors are then activated by Trx in nucleus. This enzyme over-expressed can thus bind redox-sensitive transcription factors and activates them. That leads to modulate their DNA-binding activity on the promoter region of several genes. Transcription factors regulate in this way expression of genes which leads to cellular activation and regulates apoptosis <ref>Cassidy PB, Edes K, Nelson CC, Parsawar K, Fitzpatrick FA, Moos PJ. Thioredoxin reductase is required for the inactivation of tumor suppressor p53 and for apoptosis induced by endogenous electrophiles. Carcinogenesis. 2006 Dec;27(12):2538-49. Epub 2006 Jun 15.</ref>. For example, the tumour suppressor protein p53 stimulates reporter gene expression involved in cellular function such as mitosis or apoptosis. He is the guardian of the genome in prevent mutations by inducing expression of various genes as redox related genes, apoptosis related genes and many other <ref>Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300-5.</ref>. In addition, Trx can also regulate the transcription factor NF-κB which is involved in the control of several processes as cell growth, immune response or even inflammation <ref>Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):395-403.</ref>. |
=== And its impact of immune system === | === And its impact of immune system === | ||
Revision as of 20:58, 29 January 2016
| This Sandbox is Reserved from 15/12/2015, through 15/06/2016 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1120 through Sandbox Reserved 1159. |
To get started:
More help: Help:Editing |
Human Thioredoxin Reductase 1
| |||||||||||
References
- ↑ Mustacich D, Powis G. Thioredoxin reductase. Biochem J. 2000 Feb 15;346 Pt 1:1-8.
- ↑ Jurado J, Prieto-Alamo MJ, Madrid-Rísquez J, Pueyo C. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse. J Biol Chem. 2003 Nov 14;278(46):45546-54. Epub 2003 Sep 3.
- ↑ Holmgren A, Björnstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199-208.
- ↑ Oblong JE, Berggren M, Gasdaska PY, Powis G. Site-directed mutagenesis of active site cysteines in human thioredoxin produces competitive inhibitors of human thioredoxin reductase and elimination of mitogenic properties of thioredoxin. J Biol Chem. 1994 Apr 22;269(16):11714-20.
- ↑ Powis G, Montfort WR. Properties and biological activities of thioredoxins. Annu Rev Pharmacol Toxicol. 2001;41:261-95.
- ↑ Ueno M, Masutani H, Arai RJ, Yamauchi A, Hirota K, Sakai T, Inamoto T, Yamaoka Y, Yodoi J, Nikaido T. Thioredoxin-dependent redox regulation of p53-mediated p21 activation. J Biol Chem. 1999 Dec 10;274(50):35809-15.
- ↑ Freemerman AJ, Gallegos A, Powis G. Nuclear factor kappaB transactivation is increased but is not involved in the proliferative effects of thioredoxin overexpression in MCF-7 breast cancer cells. Cancer Res. 1999 Aug 15;59(16):4090-4.
- ↑ Cassidy PB, Edes K, Nelson CC, Parsawar K, Fitzpatrick FA, Moos PJ. Thioredoxin reductase is required for the inactivation of tumor suppressor p53 and for apoptosis induced by endogenous electrophiles. Carcinogenesis. 2006 Dec;27(12):2538-49. Epub 2006 Jun 15.
- ↑ Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997 Sep 18;389(6648):300-5.
- ↑ Kabe Y, Ando K, Hirao S, Yoshida M, Handa H. Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):395-403.
- ↑ Nakamura H. Extracellular functions of thioredoxin. Novartis Found Symp. 2008;291:184-92; discussion 192-5, 221-4.
This is a default text for your page '. Click above on edit this page' to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.
