Sandbox Reserved 1125

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 32: Line 32:
=== Catalytic domain ===
=== Catalytic domain ===
-
Thanks to X-ray crystallography, the catalytic domain structure has been solved with 1,7 Å resolution (2OY4).This domain is composed of 157 residues, from Met86 to Gly242, organized in <scene name='71/719866/Helixes/4'>three alpha helixes</scene> and <scene name='71/719866/Sheets/3'>five beta sheets</scene>.The protein folding and especially the zinc environment of the collagenase catalytic domain is very close to the astacins and the snake venom metalloproteinases. The catalytic domain alone has proteolytic activity against other protein substrates and synthetic substrates.<ref>[http://www.ncbi.nlm.nih.gov/pmc/articles/PMC394940/?page=2 "The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity"]</ref>
+
Thanks to X-ray crystallography, the catalytic domain structure has been solved with 1,7 Å resolution (2OY4).This domain is composed of 157 residues, from Met86 to Gly242, organized in <scene name='71/719866/Helixes/4'>three alpha helixes</scene> and <scene name='71/719866/Sheets/3'>five beta sheets</scene>.The protein folding and especially the zinc environment of the collagenase catalytic domain is very close to the astacins and the snake venom metalloproteinases. The catalytic domain alone has proteolytic activity against other protein substrates and synthetic substrates.<ref>PMID:8137810</ref>
==== Ca2+ interactions ====
==== Ca2+ interactions ====
[[Image:CA_pocket_interaction.gif | thumb|CA996 pocket interaction]]This enzyme binds 3 Ca ions, 2 of them in the catalytic domain, which are packed against the top of the beta sheet and mostly have a structural function, stabilizing the catalytic domain.
[[Image:CA_pocket_interaction.gif | thumb|CA996 pocket interaction]]This enzyme binds 3 Ca ions, 2 of them in the catalytic domain, which are packed against the top of the beta sheet and mostly have a structural function, stabilizing the catalytic domain.

Revision as of 14:12, 30 January 2016

Matrix metalloproteinase-8

MMP-8, also called, Neutrophil collagenase or Collagenase 2, is a zinc-dependent and calcium-dependent enzyme. It belongs to the Matrix metalloproteinase
(MMP) family which is involved in the breakdown of extracellular matrix in embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. The gene coding this family is localized on the chromosome 11 of Homo sapiens with 467 residues.[1]

MMP-8 catalytic domain

Drag the structure with the mouse to rotate

References

  1. "MMP-8 matrix metallopeptidase 8 (neutrophil collagenase)"
  2. "Metalloendopeptidase activity"
  3. "Information on EC 3.4.24.34 - Neutrophil collagenase"
  4. Stams T, Spurlino JC, Smith DL, Wahl RC, Ho TF, Qoronfleh MW, Banks TM, Rubin B. Structure of human neutrophil collagenase reveals large S1' specificity pocket. Nat Struct Biol. 1994 Feb;1(2):119-23. PMID:7656015
  5. 5.0 5.1 Substrate specificity of MMPs
  6. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263-9. PMID:8137810
  7. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263-9. PMID:8137810
  8. Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 1994 Mar 15;13(6):1263-9. PMID:8137810
  9. Knauper V, Docherty AJ, Smith B, Tschesche H, Murphy G. Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Lett. 1997 Mar 17;405(1):60-4. PMID:9094424
  10. Hirose T, Patterson C, Pourmotabbed T, Mainardi CL, Hasty KA. Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2569-73. PMID:8464863
  11. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5578-82. PMID:2164689
  12. Chung L, Dinakarpandian D, Yoshida N, Lauer-Fields JL, Fields GB, Visse R, Nagase H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J. 2004 Aug 4;23(15):3020-30. Epub 2004 Jul 15. PMID:15257288 doi:http://dx.doi.org/10.1038/sj.emboj.7600318
  13. Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol. 2007 Apr;81(4):870-92. Epub 2006 Dec 21. PMID:17185359 doi:http://dx.doi.org/10.1189/jlb.1006629
  14. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May 2;92(8):827-39. PMID:12730128 doi:http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D
  15. Knauper V, Docherty AJ, Smith B, Tschesche H, Murphy G. Analysis of the contribution of the hinge region of human neutrophil collagenase (HNC, MMP-8) to stability and collagenolytic activity by alanine scanning mutagenesis. FEBS Lett. 1997 Mar 17;405(1):60-4. PMID:9094424
  16. "Neutrophil collagenase"
  17. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003 May 2;92(8):827-39. PMID:12730128 doi:http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D
  18. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006 Feb 15;69(3):562-73. Epub 2006 Jan 5. PMID:16405877 doi:http://dx.doi.org/10.1016/j.cardiores.2005.12.002
  19. "Metalloprotease-inhibitor Complex"
  20. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta. 2010 Jan;1803(1):55-71. doi: 10.1016/j.bbamcr.2010.01.003. , Epub 2010 Jan 15. PMID:20080133 doi:http://dx.doi.org/10.1016/j.bbamcr.2010.01.003
  21. Jacobsen JA, Major Jourden JL, Miller MT, Cohen SM. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim Biophys Acta. 2010 Jan;1803(1):72-94. doi: 10.1016/j.bbamcr.2009.08.006. , Epub 2009 Aug 25. PMID:19712708 doi:http://dx.doi.org/10.1016/j.bbamcr.2009.08.006
  22. Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002 Oct 1;115(Pt 19):3719-27. PMID:12235282
  23. "Extra Binding Region Induced by Non-Zinc Chelating Inhibitors into the S1′ Subsite of Matrix Metalloproteinase 8"
  24. Savill NJ, Weller R, Sherratt JA. Mathematical modelling of nitric oxide regulation of rete peg formation in psoriasis. J Theor Biol. 2002 Jan 7;214(1):1-16. PMID:11786028 doi:http://dx.doi.org/10.1006/jtbi.2001.2400
  25. Larochelle C, Alvarez JI, Prat A. How do immune cells overcome the blood-brain barrier in multiple sclerosis? FEBS Lett. 2011 Dec 1;585(23):3770-80. doi: 10.1016/j.febslet.2011.04.066. Epub, 2011 May 4. PMID:21550344 doi:http://dx.doi.org/10.1016/j.febslet.2011.04.066
  26. Liu KZ, Hynes A, Man A, Alsagheer A, Singer DL, Scott DA. Increased local matrix metalloproteinase-8 expression in the periodontal connective tissues of smokers with periodontal disease. Biochim Biophys Acta. 2006 Aug;1762(8):775-80. Epub 2006 Jul 22. PMID:16928431 doi:http://dx.doi.org/10.1016/j.bbadis.2006.05.014
  27. Balbin M, Fueyo A, Knauper V, Pendas AM, Lopez JM, Jimenez MG, Murphy G, Lopez-Otin C. Collagenase 2 (MMP-8) expression in murine tissue-remodeling processes. Analysis of its potential role in postpartum involution of the uterus. J Biol Chem. 1998 Sep 11;273(37):23959-68. PMID:9727011
  28. Brand KH, Ahout IM, de Groot R, Warris A, Ferwerda G, Hermans PW. Use of MMP-8 and MMP-9 to assess disease severity in children with viral lower respiratory tract infections. J Med Virol. 2012 Sep;84(9):1471-80. doi: 10.1002/jmv.23301. PMID:22825827 doi:http://dx.doi.org/10.1002/jmv.23301
  29. Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S, Chang M. Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15226-31. doi:, 10.1073/pnas.1517847112. Epub 2015 Nov 23. PMID:26598687 doi:http://dx.doi.org/10.1073/pnas.1517847112



RESSOURCE : Image:2oy4 mm1.pdb ( la structure du monomère )

Personal tools