2kn6
From Proteopedia
Line 16: | Line 16: | ||
<text>to colour the structure by Evolutionary Conservation</text> | <text>to colour the structure by Evolutionary Conservation</text> | ||
</jmolCheckbox> | </jmolCheckbox> | ||
- | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/ | + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=2kn6 ConSurf]. |
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> |
Revision as of 02:47, 8 February 2016
Structure of full-length human ASC (Apoptosis-associated speck-like protein containing a CARD)
Structural highlights
Function[ASC_HUMAN] Functions as key mediator in apoptosis and inflammation. Promotes caspase-mediated apoptosis involving predominantly caspase-8 and also caspase-9 in a probable cell type-specific manner. Involved in activation of the mitochondrial apoptotic pathway, promotes caspase-8-dependent proteolytic maturation of BID independently of FADD in certain cell types and also mediates mitochondrial translocation of BAX and activates BAX-dependent apoptosis coupled to activation of caspase-9, -2 and -3. Involved in macrophage pyroptosis, a caspase-1-dependent inflammatory form of cell death and is the major constituent of the ASC pyroptosome which forms upon potassium depletion and rapidly recruits and activates caspase-1. In innate immune response believed to act as an integral adapter in the assembly of the inflammasome which activates caspase-1 leading to processing and secretion of proinflammatory cytokines. The function as activating adapter in different types of inflammasomes is mediated by the DAPIN and CARD domains and their homotypic interactions. Required for recruitment of caspase-1 to inflammasomes containing certain pattern recognition receptors, such as NLRP2, NLRP3, AIM2 and probably IFI16. In the NLRP1 and NLRC4 inflammasomes seems not be required but facilitates the processing of procaspase-1. In cooperation with NOD2 involved in an inflammasome activated by bacterial muramyl dipeptide leading to caspase-1 activation. May be involved in DDX58-triggered proinflammatory responses and inflammasome activation. Isoform 2 may have a regulating effect on the function as inflammasome adapter. Isoform 3 seems to inhibit inflammasome-mediated maturation of interleukin-1 beta. In collaboration with AIM2 which detects cytosolic double-stranded DNA may also be involved in a caspase-1-independent cell death that involves caspase-8. In adaptive immunity may be involved in maturation of dendritic cells to stimulate T-cell immunity and in cytoskeletal rearrangements coupled to chemotaxis and antigen uptake may be involved in post-transcriptional regulation of the guanine nucleotide exchange factor DOCK2; the latter function is proposed to involve the nuclear form. Also involved in transcriptional activation of cytokines and chemokines independent of the inflammasome; this function may involve AP-1, NF-kappa-B, MAPK and caspase-8 signaling pathways. For regulation of NF-kappa-B activating and inhibiting functions have been reported. Modulates NF-kappa-B induction at the level of the IKK complex by inhibiting kinase activity of CHUK and IKBK. Proposed to compete with RIPK2 for association with CASP1 thereby down-regulating CASP1-mediated RIPK2-dependent NF-kappa-B activation and activating interleukin-1 beta processing.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe human protein ASC is a key mediator in apoptosis and inflammation. Through its two death domains (pyrin and CARD) ASC interacts with cell death executioners, acts as an essential adapter for inflammasome integrity, and oligomerizes into functional supramolecular assemblies. However, these functions are not understood at the structural-dynamic level. This study reports the solution structure and interdomain dynamics of full-length ASC. The pyrin and CARD domains are structurally independent six-helix bundle motifs connected by a 23-residue linker. The CARD structure reveals two distinctive characteristics; helix 1 is not fragmented as in all other known CARDs, and its electrostatic surface shows a uniform distribution of positive and negative charges, whereas these are commonly separated into two areas in other death domains. The linker adopts residual structure resulting in a back-to-back orientation of the domains, which avoids steric interference of each domain with the binding site of the other. NMR relaxation experiments show that the linker is flexible despite the residual structure. This flexibility could help expand the relative volume occupied by each domain, thus increasing the capture radius for effectors. Based on the ASC structure, a tentative model is proposed to illustrate how ASC oligomerizes via CARD and pyrin homophilic interactions. Moreover, ASC oligomers have been analyzed by atomic force microscopy, showing a predominant species of disk-like particles of approximately 12-nm diameter and approximately 1-nm height. Taken together, these results provide structural insight into the behavior of ASC as an adapter molecule. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC).,de Alba E J Biol Chem. 2009 Nov 20;284(47):32932-41. Epub 2009 Sep 15. PMID:19759015[20] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|