Structural highlights
Function
[SCX1_MESMA] This alpha-like toxin binds voltage-dependently sodium channels and inhibits the inactivation of the activated channels, thereby blocking neuronal transmission. This toxin is active against mammals and insects. Is active on Nav1.4/SCN4A and Nav1.5/SCN5A. Acts as a cardiotoxin. Is 6-fold more toxic than BmK-M2.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.
Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins.,Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC J Mol Biol. 2004 Aug 27;341(5):1189-204. PMID:15321715[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Goudet C, Huys I, Clynen E, Schoofs L, Wang DC, Waelkens E, Tytgat J. Electrophysiological characterization of BmK M1, an alpha-like toxin from Buthus martensi Karsch venom. FEBS Lett. 2001 Apr 20;495(1-2):61-5. PMID:11322948
- ↑ Wang CG, Gilles N, Hamon A, Le Gall F, Stankiewicz M, Pelhate M, Xiong YM, Wang DC, Chi CW. Exploration of the functional site of a scorpion alpha-like toxin by site-directed mutagenesis. Biochemistry. 2003 Apr 29;42(16):4699-708. PMID:12705833 doi:http://dx.doi.org/10.1021/bi0270438
- ↑ Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol. 2004 Aug 27;341(5):1189-204. PMID:15321715 doi:http://dx.doi.org/10.1016/j.jmb.2004.06.067