Structural highlights
Function
[ACRB_ECOLI] AcrAB is a drug efflux protein with a broad substrate specificity.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Crystal structures of the bacterial multidrug transporter AcrB in R32 and C2 space groups showing both symmetric and asymmetric trimeric assemblies, respectively, supplemented with biochemical investigations, have provided most of the structural basis for a molecular level understanding of the protein structure and mechanisms for substrate uptake and translocation carried out by this 114-kDa inner membrane protein. They suggest that AcrB captures ligands primarily from the periplasm. Substrates can also enter the inner cavity of the transporter from the cytoplasm, but the exact mechanism of this remains undefined. Analysis of the amino acid sequences of AcrB and its homologs revealed the presence of conserved residues at the N-terminus including two phenylalanines which may be exposed to the cytoplasm. Any potential role that these conserved residues may play in function has not been addressed by existing biochemical or structural studies. Since phenylalanine residues elsewhere in the protein have been implicated in ligand binding, we explored the structure of this N-terminal region to investigate structural determinants near the cytoplasmic opening that may mediate drug uptake. Our structure of AcrB in R32 space group reveals an N-terminus loop, reducing the diameter of the central opening to approximately 15 A as opposed to the previously reported value of approximately 30 A for crystal structures in this space group with disordered N-terminus. Recent structures of the AcrB in C2 space group have revealed a helical conformation of this N-terminus but have not discussed its possible implications. We present the crystal structure of AcrB that reveals the structure of the N-terminus containing the conserved residues. We hope that the structural information provides a structural basis for others to design further biochemical investigation of the role of this portion of AcrB in mediating cytoplasmic ligand discrimination and uptake.
Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids.,Das D, Xu QS, Lee JY, Ankoudinova I, Huang C, Lou Y, DeGiovanni A, Kim R, Kim SH J Struct Biol. 2007 Jun;158(3):494-502. Epub 2006 Dec 24. PMID:17275331[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature. 2006 Sep 14;443(7108):173-9. Epub 2006 Aug 16. PMID:16915237 doi:10.1038/nature05076
- ↑ Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006 Sep 1;313(5791):1295-8. PMID:16946072 doi:313/5791/1295
- ↑ Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grutter MG. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 2007 Jan;5(1):e7. PMID:17194213 doi:10.1371/journal.pbio.0050007
- ↑ Das D, Xu QS, Lee JY, Ankoudinova I, Huang C, Lou Y, DeGiovanni A, Kim R, Kim SH. Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. J Struct Biol. 2007 Jun;158(3):494-502. Epub 2006 Dec 24. PMID:17275331 doi:http://dx.doi.org/10.1016/j.jsb.2006.12.004