| Structural highlights
Function
[GDI1_YEAST] Regulates the GDP/GTP exchange reaction of SEC4 by inhibiting the dissociation of GDP from it, and the subsequent binding of GTP to SEC4. Plays an essential role in the yeast secretory pathway.[1] [YPT1_YEAST] Involved in the trafficking of secretory vesicles from the endoplasmic reticulum (ER) to the Golgi. Regulates correct targeting and tethering of vesicles to target membranes by catalyzing the selective recruitment of proteins required for tethering and fusion onto membranes. Vesicular transport depends on shuttling of YPT1 between membrane and cytosol by GDI1, probably by recycling it to its membrane of origin after a vesicle fusion event. Required for sorting and transport of proteins from the ER through the Golgi compartment. Also involved in the recycling of membrane proteins.[2] [:][3] [4] [5] [6]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In eukaryotic cells Rab/Ypt GTPases represent a family of key membrane traffic controllers that associate with their targeted membranes via C-terminally conjugated geranylgeranyl groups. GDP dissociation inhibitor (GDI) is a general and essential regulator of Rab recycling that extracts prenylated Rab proteins from membranes at the end of their cycle of activity and facilitates their delivery to the donor membranes. Here, we present the structure of a complex between GDI and a doubly prenylated Rab protein. We show that one geranylgeranyl residue is deeply buried in a hydrophobic pocket formed by domain II of GDI, whereas the other lipid is more exposed to solvent and is skewed across several atoms of the first moiety. Based on structural information and biophysical measurements, we propose mechanistic and thermodynamic models for GDI and Rab escort protein-mediated interaction of RabGTPase with intracellular membranes.
Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling.,Pylypenko O, Rak A, Durek T, Kushnir S, Dursina BE, Thomae NH, Constantinescu AT, Brunsveld L, Watzke A, Waldmann H, Goody RS, Alexandrov K EMBO J. 2006 Jan 11;25(1):13-23. Epub 2006 Jan 5. PMID:16395334[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Garrett MD, Zahner JE, Cheney CM, Novick PJ. GDI1 encodes a GDP dissociation inhibitor that plays an essential role in the yeast secretory pathway. EMBO J. 1994 Apr 1;13(7):1718-28. PMID:8157010
- ↑ Schmitt HD, Puzicha M, Gallwitz D. Study of a temperature-sensitive mutant of the ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium. Cell. 1988 May 20;53(4):635-47. PMID:3286011
- ↑ Morsomme P, Riezman H. The Rab GTPase Ypt1p and tethering factors couple protein sorting at the ER to vesicle targeting to the Golgi apparatus. Dev Cell. 2002 Mar;2(3):307-17. PMID:11879636
- ↑ De Antoni A, Schmitzova J, Trepte HH, Gallwitz D, Albert S. Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. J Biol Chem. 2002 Oct 25;277(43):41023-31. Epub 2002 Aug 19. PMID:12189143 doi:http://dx.doi.org/10.1074/jbc.M205783200
- ↑ Calero M, Chen CZ, Zhu W, Winand N, Havas KA, Gilbert PM, Burd CG, Collins RN. Dual prenylation is required for Rab protein localization and function. Mol Biol Cell. 2003 May;14(5):1852-67. Epub 2003 Feb 6. PMID:12802060 doi:10.1091/mbc.E02-11-0707
- ↑ Lafourcade C, Galan JM, Gloor Y, Haguenauer-Tsapis R, Peter M. The GTPase-activating enzyme Gyp1p is required for recycling of internalized membrane material by inactivation of the Rab/Ypt GTPase Ypt1p. Mol Cell Biol. 2004 May;24(9):3815-26. PMID:15082776
- ↑ Pylypenko O, Rak A, Durek T, Kushnir S, Dursina BE, Thomae NH, Constantinescu AT, Brunsveld L, Watzke A, Waldmann H, Goody RS, Alexandrov K. Structure of doubly prenylated Ypt1:GDI complex and the mechanism of GDI-mediated Rab recycling. EMBO J. 2006 Jan 11;25(1):13-23. Epub 2006 Jan 5. PMID:16395334
|