| Structural highlights
Function
[GLYCO_VSIVA] Attaches the virus to host LDL receptors, inducing clathrin-dependent endocytosis of the virion.[1] [2] In the endosome, the acidic pH induces conformational changes in the glycoprotein trimer, which trigger fusion between virus and endosomal membrane.[3] [4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Glycoprotein G of the vesicular stomatitis virus triggers membrane fusion via a low pH-induced structural rearrangement. Despite the equilibrium between the pre- and postfusion states, the structure of the prefusion form, determined to 3.0 angstrom resolution, shows that the fusogenic transition entails an extensive structural reorganization of G. Comparison with the structure of the postfusion form suggests a pathway for the conformational change. In the prefusion form, G has the shape of a tripod with the fusion loops exposed, which point toward the viral membrane, and with the antigenic sites located at the distal end of the molecule. A large number of G glycoproteins, perhaps organized as in the crystals, act cooperatively to induce membrane merging.
Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G.,Roche S, Rey FA, Gaudin Y, Bressanelli S Science. 2007 Feb 9;315(5813):843-8. PMID:17289996[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Cureton DK, Massol RH, Whelan SP, Kirchhausen T. The length of vesicular stomatitis virus particles dictates a need for actin assembly during clathrin-dependent endocytosis. PLoS Pathog. 2010 Sep 30;6(9):e1001127. doi: 10.1371/journal.ppat.1001127. PMID:20941355 doi:http://dx.doi.org/10.1371/journal.ppat.1001127
- ↑ Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7306-11. doi:, 10.1073/pnas.1214441110. Epub 2013 Apr 15. PMID:23589850 doi:http://dx.doi.org/10.1073/pnas.1214441110
- ↑ Libersou S, Albertini AA, Ouldali M, Maury V, Maheu C, Raux H, de Haas F, Roche S, Gaudin Y, Lepault J. Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion. J Cell Biol. 2010 Oct 4;191(1):199-210. doi: 10.1083/jcb.201006116. PMID:20921141 doi:http://dx.doi.org/10.1083/jcb.201006116
- ↑ Albertini AA, Merigoux C, Libersou S, Madiona K, Bressanelli S, Roche S, Lepault J, Melki R, Vachette P, Gaudin Y. Characterization of monomeric intermediates during VSV glycoprotein structural transition. PLoS Pathog. 2012 Feb;8(2):e1002556. doi: 10.1371/journal.ppat.1002556. Epub 2012, Feb 23. PMID:22383886 doi:http://dx.doi.org/10.1371/journal.ppat.1002556
- ↑ Roche S, Rey FA, Gaudin Y, Bressanelli S. Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science. 2007 Feb 9;315(5813):843-8. PMID:17289996 doi:315/5813/843
|