3jcm

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 3jcm is ON HOLD
+
==Cryo-EM structure of the spliceosomal U4/U6.U5 tri-snRNP==
 +
<StructureSection load='3jcm' size='340' side='right' caption='[[3jcm]], [[Resolution|resolution]] 3.80&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3jcm]] is a 34 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JCM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3JCM FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GTP:GUANOSINE-5-TRIPHOSPHATE'>GTP</scene>, <scene name='pdbligand=M7M:N,N,7-TRIMETHYLGUANOSINE+5-(TRIHYDROGEN+DIPHOSPHATE)'>M7M</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/RNA_helicase RNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.13 3.6.4.13] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3jcm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3jcm OCA], [http://pdbe.org/3jcm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3jcm RCSB], [http://www.ebi.ac.uk/pdbsum/3jcm PDBsum]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/RSMB_YEAST RSMB_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [[http://www.uniprot.org/uniprot/LSM5_YEAST LSM5_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Component of the cytoplasmic LSM1-LSM7 complex which is thought to be involved in mRNA degradation by activating the decapping step. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM5 binds specifically to the 3'-terminal U-tract of U6 snRNA. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM5, probably in a complex that contains LSM2-LSM7 but not LSM1 or LSM8, associates with the precursor of the RNA component of RNase P (pre-P RNA) and may be involved in maturing pre-P RNA. LSM5 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:10747033</ref> <ref>PMID:10761922</ref> <ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/SNU13_YEAST SNU13_YEAST]] Common component of the spliceosome and rRNA processing machinery. In association with the spliceosomal U4/U6.U5 tri-snRNP particle, required for splicing of pre-mRNA. In association with box C/D snoRNPs, required for processing of pre-ribosomal RNA (rRNA) and site-specific 2'-O-methylation of substrate RNAs. Essential for the accumulation and stability of U4 snRNA, U6 snRNA, and box C/D snoRNAs.<ref>PMID:11081632</ref> <ref>PMID:12215523</ref> <ref>PMID:14730029</ref> [[http://www.uniprot.org/uniprot/PRP4_YEAST PRP4_YEAST]] Involved in RNA splicing. Is required for the association of U4/U6 snRNP with U5 snRNP in an early step of spliceosome assembly. [[http://www.uniprot.org/uniprot/LSM8_YEAST LSM8_YEAST]] Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, spliceosomal U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM2 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/LSM7_YEAST LSM7_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Component of the cytoplasmic LSM1-LSM7 complex which is thought to be involved in mRNA degradation by activating the decapping step. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, spliceosomal U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM7 binds specifically to the 3'-terminal U-tract of U6 snRNA. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM7, probably in a complex that contains LSM2-LSM7 but not LSM1 or LSM8, associates with the precursor of the RNA component of RNase P (pre-P RNA) and may be involved in maturing pre-P RNA.<ref>PMID:10747033</ref> <ref>PMID:10761922</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/PRP8_YEAST PRP8_YEAST]] Required for pre-spliceosome formation, which is the first step of pre-mRNA splicing. This protein is associated with snRNP U5. Has a role in branch site-3' splice site selection. Associates with the branch site-3' splice 3'-exon region. Also has a role in cell cycle.<ref>PMID:2835658</ref> <ref>PMID:9150140</ref> <ref>PMID:12773561</ref> <ref>PMID:18779563</ref> [[http://www.uniprot.org/uniprot/LSM2_YEAST LSM2_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Component of the cytoplasmic LSM1-LSM7 complex which is thought to be involved in mRNA degradation by activating the decapping step. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM2 binds specifically to the 3'-terminal U-tract of U6 snRNA. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM2, probably in a complex that contains LSM2-LSM7 but not LSM1 or LSM8, associates with the precursor of the RNA component of RNase P (pre-P RNA) and may be involved in maturing pre-P RNA. LSM2 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:10747033</ref> <ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:14627812</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/LSM4_YEAST LSM4_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Component of the cytoplasmic LSM1-LSM7 complex which is thought to be involved in mRNA degradation by activating the decapping step. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple spliceosome snRNP complexes containing the U6 snRNA (U4/U6 snRNP, U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM4 binds specifically to the 3'-terminal U-tract of U6 snRNA. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM4, probably in a complex that contains LSM2-LSM7 but not LSM1 or LSM8, associates with the precursor of the RNA component of RNase P (pre-P RNA) and may be involved in maturing pre-P RNA. LSM4 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:10747033</ref> <ref>PMID:10761922</ref> <ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/SMD2_YEAST SMD2_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [[http://www.uniprot.org/uniprot/RUXG_YEAST RUXG_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [[http://www.uniprot.org/uniprot/DIB1_YEAST DIB1_YEAST]] Essential role in pre-mRNA splicing. Also essential for entry into mitosis (G2/M progression) as well as for chromosome segregation during mitosis. [[http://www.uniprot.org/uniprot/PRP31_YEAST PRP31_YEAST]] Promotes the association of the U4/U6.U5 tri-snRNP particle with pre-spliceosomes to form the mature spliceosomal complex.<ref>PMID:8604353</ref> [[http://www.uniprot.org/uniprot/BRR2_YEAST BRR2_YEAST]] RNA helicase that plays an essential role in pre-mRNA splicing as component of the U5 snRNP and U4/U6-U5 tri-snRNP complexes. Involved in spliceosome assembly, activation and disassembly. Mediates changes in the dynamic network of RNA-RNA interactions in the spliceosome. Catalyzes the ATP-dependent unwinding of U4/U6 RNA duplices, an essential step in the assembly of a catalytically active spliceosome.<ref>PMID:19098916</ref> <ref>PMID:23124065</ref> <ref>PMID:19716790</ref> <ref>PMID:19525970</ref> [[http://www.uniprot.org/uniprot/SMD1_YEAST SMD1_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Also binds telomerase RNA and is required for its accumulation.<ref>PMID:10490028</ref> <ref>PMID:8430095</ref> [[http://www.uniprot.org/uniprot/RUXE_YEAST RUXE_YEAST]] Involved in pre-mRNA splicing. Binds and is required for the stability of snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Involved in cap modification.<ref>PMID:8918241</ref> [[http://www.uniprot.org/uniprot/RUXF_YEAST RUXF_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. [[http://www.uniprot.org/uniprot/LSM6_YEAST LSM6_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner, facilitating the efficient association of RNA processing factors with their substrates. Component of the cytoplasmic LSM1-LSM7 complex, which is thought to be involved in mRNA degradation by activating the decapping step in the 5'-to-3' mRNA decay pathway. In association with PAT1, LSM1-LSM7 binds directly to RNAs near the 3'-end and prefers oligoadenylated RNAs over polyadenylated RNAs. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 di-snRNP, spliceosomal U4/U6.U5 tri-snRNP, and free U6 snRNP). It binds directly to the 3'-terminal U-tract of U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. LSM2-LSM8 probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping, and in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. Component of a nucleolar LSM2-LSM7 complex, which associates with the precursor of the RNA component of RNase P (pre-P RNA) and with the small nucleolar RNA (snoRNA) snR5. It may play a role in the maturation of a subset of nucleolus-associated small RNAs.<ref>PMID:10747033</ref> <ref>PMID:10761922</ref> <ref>PMID:15485930</ref> <ref>PMID:17513695</ref> [[http://www.uniprot.org/uniprot/SN114_YEAST SN114_YEAST]] Component of the U5 snRNP complex required for pre-mRNA splicing. Binds GTP. [[http://www.uniprot.org/uniprot/PRP6_YEAST PRP6_YEAST]] Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome. [[http://www.uniprot.org/uniprot/SMD3_YEAST SMD3_YEAST]] Involved in pre-mRNA splicing. Binds snRNA U1, U2, U4 and U5 which contain a highly conserved structural motif called the Sm binding site. Also binds telomerase RNA and is required for its accumulation.<ref>PMID:10490028</ref> <ref>PMID:7799953</ref> [[http://www.uniprot.org/uniprot/LSM3_YEAST LSM3_YEAST]] Component of LSm protein complexes, which are involved in RNA processing and may function in a chaperone-like manner. Component of the cytoplasmic LSM1-LSM7 complex which is thought to be involved in mRNA degradation by activating the decapping step. Component of the nuclear LSM2-LSM8 complex, which is involved in splicing of nuclear mRNAs. LSM2-LSM8 associates with multiple snRNP complexes containing the U6 snRNA (U4/U6 snRNP, U4/U6.U5 snRNP, and free U6 snRNP). It binds directly to the U6 snRNA and plays a role in the biogenesis and stability of the U6 snRNP and U4/U6 snRNP complexes. It probably also is involved degradation of nuclear pre-mRNA by targeting them for decapping. LSM3 binds specifically to the 3'-terminal U-tract of U6 snRNA. LSM2-LSM8 probably is involved in processing of pre-tRNAs, pre-rRNAs and U3 snoRNA. LSM3, probably in a complex that contains LSM2-LSM7 but not LSM1 or LSM8, associates with the precursor of the RNA component of RNase P (pre-P RNA) and may be involved in maturing pre-P RNA. LSM3 is required for processing of pre-tRNAs, pre-rRNAs and U3 snoRNA.<ref>PMID:7744014</ref> <ref>PMID:10747033</ref> <ref>PMID:10761922</ref> <ref>PMID:12077351</ref> <ref>PMID:12438310</ref> <ref>PMID:15485930</ref> [[http://www.uniprot.org/uniprot/PRP3_YEAST PRP3_YEAST]] Participates in pre-mRNA splicing. Part of the U4/U5/U6 tri-snRNP complex, one of the building blocks of the spliceosome.<ref>PMID:9326489</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Splicing of precursor messenger RNA is accomplished by a dynamic megacomplex known as the spliceosome. Assembly of a functional spliceosome requires a preassembled U4/U6.U5 tri-snRNP complex, which comprises the U5 small nuclear ribonucleoprotein (snRNP), the U4 and U6 small nuclear RNA (snRNA) duplex, and a number of protein factors. Here we report the three-dimensional structure of a Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at an overall resolution of 3.8 angstroms by single-particle electron cryomicroscopy. The local resolution for the core regions of the tri-snRNP reaches 3.0 to 3.5 angstroms, allowing construction of a refined atomic model. Our structure contains U5 snRNA, the extensively base-paired U4/U6 snRNA, and 30 proteins including Prp8 and Snu114, which amount to 8495 amino acids and 263 nucleotides with a combined molecular mass of ~1 megadalton. The catalytic nucleotide U80 from U6 snRNA exists in an inactive conformation, stabilized by its base-pairing interactions with U4 snRNA and protected by Prp3. Pre-messenger RNA is bound in the tri-snRNP through base-pairing interactions with U6 snRNA and loop I of U5 snRNA. This structure, together with that of the spliceosome, reveals the molecular choreography of the snRNAs in the activation process of the spliceosomal ribozyme.
-
Authors: Wan, R., Yan, C., Bai, R., Wang, L., Huang, M., Wong, C.C., Shi, Y.
+
The 3.8 A structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis.,Wan R, Yan C, Bai R, Wang L, Huang M, Wong CC, Shi Y Science. 2016 Jan 29;351(6272):466-75. doi: 10.1126/science.aad6466. Epub 2016, Jan 7. PMID:26743623<ref>PMID:26743623</ref>
-
Description: Cryo-EM structure of the spliceosomal U4/U6.U5 tri-snRNP
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
-
[[Category: Huang, M]]
+
<div class="pdbe-citations 3jcm" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: RNA helicase]]
 +
[[Category: Saccharomyces cerevisiae s288c]]
[[Category: Bai, R]]
[[Category: Bai, R]]
-
[[Category: Wong, C.C]]
+
[[Category: Huang, M]]
 +
[[Category: Shi, Y]]
[[Category: Wan, R]]
[[Category: Wan, R]]
[[Category: Wang, L]]
[[Category: Wang, L]]
 +
[[Category: Wong, C C]]
[[Category: Yan, C]]
[[Category: Yan, C]]
-
[[Category: Shi, Y]]
+
[[Category: Pre-mrna]]
 +
[[Category: Transcription]]
 +
[[Category: U4/u6 u5 tri-snrnp]]

Revision as of 18:12, 26 February 2016

Cryo-EM structure of the spliceosomal U4/U6.U5 tri-snRNP

3jcm, resolution 3.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools