Sandbox Wabash 06 Fumarase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Mutations in Fumerase Active Site==
==Mutations in Fumerase Active Site==
<StructureSection load=1YFE size='340' side='right' caption='Caption for this structure' scene=''>
<StructureSection load=1YFE size='340' side='right' caption='Caption for this structure' scene=''>
-
 
+
Fumarase (fumararte hydratase) catalyzes the hydration of fumarate (double bonded) to form malate. The hydration reaction, which includes a carbanion transition state, has OH- addition occur before H+. Fumarase can be found in the urea cycle, an important biochemical reaction used to produce urea.
== Debate ==
== Debate ==
<scene name='72/726382/His188_and_his129/1'>Two mutant forms</scene>of fumarase C from E. coli have been made using PCR and recombinant DNA. Two different carboxylic acid binding sites (A+B) were observed in the crystal structures of the WT inhibited forms of the enzyme. The <scene name='72/726382/H188n/1'>H188N mutant </scene>has L-malate bound at active site A.
<scene name='72/726382/His188_and_his129/1'>Two mutant forms</scene>of fumarase C from E. coli have been made using PCR and recombinant DNA. Two different carboxylic acid binding sites (A+B) were observed in the crystal structures of the WT inhibited forms of the enzyme. The <scene name='72/726382/H188n/1'>H188N mutant </scene>has L-malate bound at active site A.
 +
<ref>Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Aptara. Print.</ref>
Crystallographic studies with several inhibitors including pyromellitic acid and B-trimethylsilyl maleate yielded interesting results. While both inhibitors are related to the normal substrate, each was found bound at different sites. The binding site of inhibitors citrate and pyromellitic acid was deemed the A site while a second site containing L-malate and B-trimethylsilyl maleate was labeled as the B-site. The first argument for site A being the active site was that the A site was formed by 3 of the 4 subunits. Secondly, citrate was used at high concentrations as a crystallizing agent and is known to competitively inhibit fumarase. As such, in X-ray studies, citrate was not able to be removed readily from the specimen preparation and it pointed to the A site. In regards to the B site, it was first noted that atoms of a single subunit formed the B site. Strong arguments were then made against the B site as no active monomeric form of fumarase has ever been described.
Crystallographic studies with several inhibitors including pyromellitic acid and B-trimethylsilyl maleate yielded interesting results. While both inhibitors are related to the normal substrate, each was found bound at different sites. The binding site of inhibitors citrate and pyromellitic acid was deemed the A site while a second site containing L-malate and B-trimethylsilyl maleate was labeled as the B-site. The first argument for site A being the active site was that the A site was formed by 3 of the 4 subunits. Secondly, citrate was used at high concentrations as a crystallizing agent and is known to competitively inhibit fumarase. As such, in X-ray studies, citrate was not able to be removed readily from the specimen preparation and it pointed to the A site. In regards to the B site, it was first noted that atoms of a single subunit formed the B site. Strong arguments were then made against the B site as no active monomeric form of fumarase has ever been described.

Revision as of 21:47, 29 February 2016

Mutations in Fumerase Active Site

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Voet, Donald, Judith G. Voet, and Charlotte W. Pratt. Fundamentals of Biochemistry: Life at the Molecular Level. 3rd ed. Aptara. Print.
  2. Weaver T, Lees M, Banaszak L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 1997 Apr;6(4):834-42. PMID:9098893
  3. Weaver T, Lees M, Banaszak L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 1997 Apr;6(4):834-42. PMID:9098893
  4. Weaver T, Lees M, Banaszak L. Mutations of fumarase that distinguish between the active site and a nearby dicarboxylic acid binding site. Protein Sci. 1997 Apr;6(4):834-42. PMID:9098893
Personal tools