1gjz

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gjz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gjz OCA], [http://www.ebi.ac.uk/pdbsum/1gjz PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1gjz RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.
Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.
- 
-
==Disease==
 
-
Known disease associated with this structure: Cleft palate, isolated OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=191339 191339]]
 
==About this Structure==
==About this Structure==
Line 33: Line 33:
[[Category: ubiquitin]]
[[Category: ubiquitin]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:24:08 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 20:45:38 2008''

Revision as of 17:45, 30 March 2008


PDB ID 1gjz

Drag the structure with the mouse to rotate
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



SOLUTION STRUCTURE OF A DIMERIC N-TERMINAL FRAGMENT OF HUMAN UBIQUITIN


Overview

Previous peptide dissection and kinetic experiments have indicated that in vitro folding of ubiquitin may proceed via transient species in which native-like structure has been acquired in the first 45 residues. A peptide fragment, UQ(1-51), encompassing residues 1 to 51 of ubiquitin was produced in order to test whether this portion has propensity for independent self-assembly. Surprisingly, the construct formed a folded symmetrical dimer that was stabilised by 0.8 M sodium sulphate at 298 K (the S state). The solution structure of the UQ(1-51) dimer was determined by multinuclear NMR spectroscopy. Each subunit of UQ(1-51) consists of an N-terminal beta-hairpin followed by an alpha-helix and a final beta-strand, with orientations similar to intact ubiquitin. The dimer is formed by the third beta-strand of one subunit interleaving between the hairpin and third strand of the other to give a six-stranded beta-sheet, with the two alpha-helices sitting on top. The helix-helix and strand portions of the dimer interface also mimic related features in the structure of ubiquitin. The structural specificity of the UQ(1-51) peptide is tuneable: as the concentration of sodium sulphate is decreased, near-native alternative conformations are populated in slow chemical exchange. Magnetization transfer experiments were performed to characterize the various species present in 0.35 M sodium sulphate, namely the S state and two minor forms. Chemical shift differences suggest that one minor form is very similar to the S state, while the other experiences a significant conformational change in the third strand. A segmental rearrangement of the third strand in one subunit of the S state would render the dimer asymmetric, accounting for most of our results. Similar small-scale transitions in proteins are often invoked to explain solvent exchange at backbone amide proton sites that have an intermediate level of protection.

About this Structure

1GJZ is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Structure and properties of a dimeric N-terminal fragment of human ubiquitin., Bolton D, Evans PA, Stott K, Broadhurst RW, J Mol Biol. 2001 Dec 7;314(4):773-87. PMID:11733996

Page seeded by OCA on Sun Mar 30 20:45:38 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools