Sandbox Reserved 1165
From Proteopedia
| Line 35: | Line 35: | ||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | |||
| - | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | ||
| - | |||
</StructureSection> | </StructureSection> | ||
==Clinical Relevancy== | ==Clinical Relevancy== | ||
Revision as of 13:02, 22 March 2016
[[Image:]]
| This Sandbox is Reserved from Jan 11 through August 12, 2016 for use in the course CH462 Central Metabolism taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1160 through Sandbox Reserved 1184. |
To get started:
More help: Help:Editing |
Human Glucagon Class B G Protein-Coupled Receptors (GPCRs)
| |||||||||||
Clinical Relevancy
Of the fifteen human class B GPCRs, eight have been identified as potential drug target. Therapeutic agents have been created from the peptides themselves within this protein, but overall pharmaceutical companies have had difficulty creating agents that act on family B GPCRS. There is an outward appearance and inherent flexibility in the class B GCGR 7TM because of conserved hydrogen bonds that flank a glycine residue, and this structure along with the ECD and its role of interactions on the extracellular side of receptors may provide evidence to how class B receptors adjust its conformational spectra for various receptors. Researchers hope to show how these conformations can be utilized in potential treatments of a wide array disorders.
