Sandbox Reserved 1160

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
== Human metabotropic glutamate receptor 5 transmembrane domain ==
== Human metabotropic glutamate receptor 5 transmembrane domain ==
<StructureSection load='4oo9' size='300' frame='true' side='right' caption='Human metabotropic glutamate receptor 5 transmembrane domain' scene='72/721531/Protien_clean_sce/1'>
<StructureSection load='4oo9' size='300' frame='true' side='right' caption='Human metabotropic glutamate receptor 5 transmembrane domain' scene='72/721531/Protien_clean_sce/1'>
-
Receiving and responding to extracellular messages is critical to the proper function of the nervous system. Glutamate is the major excitory neurotransmitter of the CNS, and metabotropic glutamate receptor 5 will play a major role in glutamate signaling. Metabotropic glutamate receptor 5 transmembrane domain is a homodimeric GPCR that resides in the cellular membrane <ref name="Dore" />. This domain is a member of the Class C GPCR family and can further be categorized into the Group I subgroup. The transmembrane domain will signal through a Gq/11 pathway. mGlu5 will bind glutamate to the extracellular Venus flytrap domain and the signal will be transduced across the membrane to a heterotrimeric G protein, which will ultimately lead to calcium release and activation of PKC. This will elicit a excitory post-synaptic repose and modulate long term potentiation. Human metabotropic glutamate receptor 5 is found throughout the central nervous system. Areas containing high concentrations of this protein are often involved involved in emotions and higher cognition<ref name="Wu" />. The localization of mGlu5 in the CNS and the presence of multiple domains makes mGlu5 a possible target for treating schizophrenia, Fragile X, depression, anxiety,and Alzheimer's disease<ref name="Wu" />.
+
Receiving and responding to extracellular messages is critical to the proper function of the nervous system. Glutamate is the major excitory neurotransmitter of the CNS, and metabotropic glutamate receptor 5 will play a major role in glutamate signaling. Metabotropic glutamate receptor 5 transmembrane domain is a homodimeric GPCR that resides in the cellular membrane <ref name="Dore" />. This domain is a member of the Class C GPCR family and can further be categorized into the Group I subgroup. The transmembrane domain will signal through a Gq/11 pathway. mGlu5 will bind glutamate to the extracellular Venus flytrap domain and the signal will be transduced across the membrane to a heterotrimeric G protein, which will ultimately lead to calcium release and activation of PKC. This will elicit a excitory post-synaptic repose and modulate long term potentiation. Human metabotropic glutamate receptor 5 is found throughout the central nervous system. Areas containing high concentrations of this protein are often involved involved in emotions and higher cognition<ref name="Niswender" />. The localization of mGlu5 in the CNS and the presence of multiple domains makes mGlu5 a possible target for treating schizophrenia, Fragile X, depression, anxiety,and Alzheimer's disease<ref name="Wu" />.
== Discovery ==
== Discovery ==
Line 29: Line 29:
=== Fragile X ===
=== Fragile X ===
 +
One positive characteristic of ligands that target the TMD is they tend to be more specific, thus interacting less with brain proteins<ref name="Feng" />.
 +
However, modulators of mGlu5 TMD continue to be studied in treating Parkinson's, Alzheimer's disease, and various addictions<ref name="Niswender" />.
=== Parkinsons ===
=== Parkinsons ===
== Relevance ==
== Relevance ==
Line 42: Line 44:
<ref name="Dore">PMID: 25042998</ref>
<ref name="Dore">PMID: 25042998</ref>
<ref name="Wu">PMID: 24603153</ref>
<ref name="Wu">PMID: 24603153</ref>
 +
<ref name="Niswender">PMID: 20055706</ref>
 +
<ref name="Feng">PMID: 4406965</ref>
 +
<ref name="Dore">PMID: 25042998</ref>
<references/>
<references/>
== External Resources ==
== External Resources ==

Revision as of 00:44, 30 March 2016

Human metabotropic glutamate receptor 5 transmembrane domain

Human metabotropic glutamate receptor 5 transmembrane domain

Drag the structure with the mouse to rotate

References

[1] [3] [2] [4] [1]

  1. 1.0 1.1 1.2 Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B, Weir M, Wiggin GR, Marshall FH. Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature. 2014 Jul 31;511(7511):557-62. doi: 10.1038/nature13396. Epub 2014 Jul 6. PMID:25042998 doi:http://dx.doi.org/10.1038/nature13396
  2. 2.0 2.1 2.2 Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295-322. doi:, 10.1146/annurev.pharmtox.011008.145533. PMID:20055706 doi:http://dx.doi.org/10.1146/annurev.pharmtox.011008.145533
  3. 3.0 3.1 3.2 Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar , 6. PMID:24603153 doi:http://dx.doi.org/10.1126/science.1249489
  4. 4.0 4.1 . Editorial comments: More on the laboratory section. Health Lab Sci. 1974 Jul;11(3):167-8. PMID:4406965

External Resources

Personal tools