5e2i

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
Structure-based drug design utilizes apo-protein or complex structures retrieved from the PDB. &gt;57% of crystallographic PDB entries were obtained with polyethyleneglycols (PEGs) as precipitant and/or as cryoprotectant, but &gt;6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are approximately 3.0A further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct pi-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethyleneglycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design. This article is protected by copyright. All rights reserved.
+
Structure-based drug design utilizes apoprotein or complex structures retrieved from the PDB. &gt;57% of crystallographic PDB entries were obtained with polyethylene glycols (PEGs) as precipitant and/or as cryoprotectant, but &lt;6% of these report presence of individual ethyleneglycol oligomers. We report a case in which ethyleneglycol oligomers' presence in a crystal structure markedly affected the bound ligand's position. Specifically, we compared the positions of methylene blue and decamethonium in acetylcholinesterase complexes obtained using isomorphous crystals precipitated with PEG200 or ammonium sulfate. The ligands' positions within the active-site gorge in complexes obtained using PEG200 are influenced by presence of ethyleneglycol oligomers in both cases bound to W84 at the gorge's bottom, preventing interaction of the ligand's proximal quaternary group with its indole. Consequently, both ligands are approximately 3.0A further up the gorge than in complexes obtained using crystals precipitated with ammonium sulfate, in which the quaternary groups make direct pi-cation interactions with the indole. These findings have implications for structure-based drug design, since data for ligand-protein complexes with polyethylene glycol as precipitant may not reflect the ligand's position in its absence, and could result in selecting incorrect drug discovery leads. Docking methylene blue into the structure obtained with PEG200, but omitting the ethyleneglycols, yields results agreeing poorly with the crystal structure; excellent agreement is obtained if they are included. Many proteins display features in which precipitants might lodge. It will be important to investigate presence of precipitants in published crystal structures, and whether it has resulted in misinterpreting electron density maps, adversely affecting drug design.
-
The Impact of Crystallization Conditions on Structure-Based Drug Design: A Case Study on the Methylene Blue/Acetylcholinesterase Complex.,Dym O, Song W, Felder C, Roth E, Shnyrov V, Ashani Y, Xu Y, Joosten RP, Weiner L, Sussman JL, Silman I Protein Sci. 2016 Mar 14. doi: 10.1002/pro.2923. PMID:26990888<ref>PMID:26990888</ref>
+
The impact of crystallization conditions on structure-based drug design: A case study on the methylene blue/acetylcholinesterase complex.,Dym O, Song W, Felder C, Roth E, Shnyrov V, Ashani Y, Xu Y, Joosten RP, Weiner L, Sussman JL, Silman I Protein Sci. 2016 Mar 14. doi: 10.1002/pro.2923. PMID:26990888<ref>PMID:26990888</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 04:56, 10 May 2016

Acetycholinesterase Methylene Blue no PEG

5e2i, resolution 2.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools