4xod
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
+ | |||
==Crystal structure of a FimH*DsG complex from E.coli F18== | ==Crystal structure of a FimH*DsG complex from E.coli F18== | ||
<StructureSection load='4xod' size='340' side='right' caption='[[4xod]], [[Resolution|resolution]] 1.14Å' scene=''> | <StructureSection load='4xod' size='340' side='right' caption='[[4xod]], [[Resolution|resolution]] 1.14Å' scene=''> | ||
Line 5: | Line 6: | ||
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xod FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xod OCA], [http://pdbe.org/4xod PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xod RCSB], [http://www.ebi.ac.uk/pdbsum/4xod PDBsum]</span></td></tr> | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xod FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xod OCA], [http://pdbe.org/4xod PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xod RCSB], [http://www.ebi.ac.uk/pdbsum/4xod PDBsum]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins. Here we establish peptide-complemented FimH as a model system for fimbrial FimH function. We reveal a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction and molecular dynamics simulations. In the absence of tensile force, the FimH pilin domain allosterically accelerates spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity. Separation of the FimH domains under stress abolishes allosteric interplay and increases the affinity of the lectin domain. Cell tracking demonstrates that rapid ligand dissociation from FimH supports motility of piliated E. coli on mannosylated surfaces in the absence of shear force. | ||
+ | |||
+ | Catch-bond mechanism of the bacterial adhesin FimH.,Sauer MM, Jakob RP, Eras J, Baday S, Eris D, Navarra G, Berneche S, Ernst B, Maier T, Glockshuber R Nat Commun. 2016 Mar 7;7:10738. doi: 10.1038/ncomms10738. PMID:26948702<ref>PMID:26948702</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 4xod" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 16:51, 10 May 2016
Crystal structure of a FimH*DsG complex from E.coli F18
|
Categories: Glockshuber, R | Jakob, R P | Maier, T | Sauer, M M | Bacterial adhesin | Catch-bond | Cell adhesion | Lectin | Mannose | Type i pilus | Upec | Uti