5fus
From Proteopedia
(Difference between revisions)
m (Protected "5fus" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | '''Unreleased structure''' | ||
| - | + | ==Crystal structure of B. cenocepacia DfsA== | |
| + | <StructureSection load='5fus' size='340' side='right' caption='[[5fus]], [[Resolution|resolution]] 1.87Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[5fus]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FUS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5FUS FirstGlance]. <br> | ||
| + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DAO:LAURIC+ACID'>DAO</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=PG0:2-(2-METHOXYETHOXY)ETHANOL'>PG0</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
| + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Enoyl-CoA_hydratase Enoyl-CoA hydratase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=4.2.1.17 4.2.1.17] </span></td></tr> | ||
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5fus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fus OCA], [http://pdbe.org/5fus PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5fus RCSB], [http://www.ebi.ac.uk/pdbsum/5fus PDBsum]</span></td></tr> | ||
| + | </table> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Burkholderia cenocepacia is a major concern among respiratory tract infections in cystic fibrosis patients. This pathogen is particularly difficult to treat because of its high level of resistance to the clinically relevant antimicrobial agents. In B. cenocepacia, the quorum sensing cell-cell communication system is involved in different processes important for the bacterial virulence, such as biofilm formation or protease and siderophore production. Targeting the enzymes involved in this process represents a promising therapeutic approach. With the aim of finding effective quorum sensing inhibitors, we have determined the three-dimensional structure of B. cenocepacia diffusible factor synthase A, DfsA. This bifunctional crotonase (dehydratase/thioesterase) produces the characteristic quorum sensing molecule of B. cenocepacia, cis-2-dodecenoic acid or BDSF, starting from 3-hydroxydodecanoyl-acyl carrier protein. Unexpectedly, the crystal structure revealed the presence of a lipid molecule into the catalytic site of the enzyme, which was identified as dodecanoic acid. Our biochemical characterization shows that DfsA is able to use dodecanoyl-acyl carrier protein as a substrate, demonstrating that dodecanoic acid, the product of this reaction, is released very slowly from the DfsA active site, therefore acting as a DfsA inhibitor. This molecule shows an unprecedented conformational arrangement inside the DfsA active site. In contrast with previous hypotheses, our data illustrate how DfsA and closely-related homologous enzymes can recognize long hydrophobic substrates without large conformational changes or assistance by additional regulator molecules. The elucidation of the substrate binding mode in DfsA provides the starting point for structure-based drug discovery studies targeting B. cenocepacia quorum sensing-assisted virulence. | ||
| - | + | The crystal structure of Burkholderia cenocepacia DfsA provides insights into substrate recognition and quorum sensing fatty acid biosynthesis.,Spadaro F, Scoffone VC, Chiarelli LR, Fumagalli M, Buroni S, Riccardi G, Forneris F Biochemistry. 2016 May 19. PMID:27198181<ref>PMID:27198181</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | [[Category: | + | </div> |
| + | <div class="pdbe-citations 5fus" style="background-color:#fffaf0;"></div> | ||
| + | == References == | ||
| + | <references/> | ||
| + | __TOC__ | ||
| + | </StructureSection> | ||
| + | [[Category: Enoyl-CoA hydratase]] | ||
[[Category: Buroni, S]] | [[Category: Buroni, S]] | ||
| - | + | [[Category: Chiarelli, L R]] | |
| - | [[Category: Chiarelli, L | + | |
[[Category: Forneris, F]] | [[Category: Forneris, F]] | ||
| - | [[Category: Spadaro, F]] | ||
| - | [[Category: Riccardi, G]] | ||
[[Category: Fumagalli, M]] | [[Category: Fumagalli, M]] | ||
| + | [[Category: Riccardi, G]] | ||
| + | [[Category: Scoffone, V C]] | ||
| + | [[Category: Spadaro, F]] | ||
| + | [[Category: Bdsf biosynthesis]] | ||
| + | [[Category: Crotonase]] | ||
| + | [[Category: Lyase]] | ||
| + | [[Category: Quorum sensing]] | ||
Revision as of 15:45, 1 June 2016
Crystal structure of B. cenocepacia DfsA
| |||||||||||
