5l3q
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
<table><tr><td colspan='2'>[[5l3q]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L3Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5L3Q FirstGlance]. <br> | <table><tr><td colspan='2'>[[5l3q]] is a 4 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L3Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5L3Q FirstGlance]. <br> | ||
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=AMP:ADENOSINE+MONOPHOSPHATE'>AMP</scene>, <scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | ||
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5l3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l3q OCA], [http://pdbe.org/5l3q PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l3q RCSB], [http://www.ebi.ac.uk/pdbsum/5l3q PDBsum]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5l3q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l3q OCA], [http://pdbe.org/5l3q PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l3q RCSB], [http://www.ebi.ac.uk/pdbsum/5l3q PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l3q ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/SRP54_HUMAN SRP54_HUMAN]] Binds to the signal sequence of presecretory protein when they emerge from the ribosomes and transfers them to TRAM (translocating chain-associating membrane protein). [[http://www.uniprot.org/uniprot/SRPRA_HUMAN SRPRA_HUMAN]] Component of the SRP (signal recognition particle) receptor. Ensures, in conjunction with the signal recognition particle, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system. | [[http://www.uniprot.org/uniprot/SRP54_HUMAN SRP54_HUMAN]] Binds to the signal sequence of presecretory protein when they emerge from the ribosomes and transfers them to TRAM (translocating chain-associating membrane protein). [[http://www.uniprot.org/uniprot/SRPRA_HUMAN SRPRA_HUMAN]] Component of the SRP (signal recognition particle) receptor. Ensures, in conjunction with the signal recognition particle, the correct targeting of the nascent secretory proteins to the endoplasmic reticulum membrane system. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRalpha in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA. | ||
+ | |||
+ | Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex.,Wild K, Bange G, Motiejunas D, Kribelbauer J, Hendricks A, Segnitz B, Wade RC, Sinning I J Mol Biol. 2016 May 27. pii: S0022-2836(16)30184-X. doi:, 10.1016/j.jmb.2016.05.015. PMID:27241309<ref>PMID:27241309</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5l3q" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 06:46, 26 July 2016
Structure of the GTPase heterodimer of human SRP54 and SRalpha
|