| Structural highlights
Disease
[DCTN1_HUMAN] Defects in DCTN1 are the cause of distal hereditary motor neuronopathy type 7B (HMN7B) [MIM:607641]; also known as progressive lower motor neuron disease (PLMND). HMN7B is a neuromuscular disorder. Distal hereditary motor neuronopathies constitute a heterogeneous group of neuromuscular disorders caused by selective degeneration of motor neurons in the anterior horn of the spinal cord, without sensory deficit in the posterior horn. The overall clinical picture consists of a classical distal muscular atrophy syndrome in the legs without clinical sensory loss. The disease starts with weakness and wasting of distal muscles of the anterior tibial and peroneal compartments of the legs. Later on, weakness and atrophy may expand to the proximal muscles of the lower limbs and/or to the distal upper limbs.[1] [2] [3] [4] Defects in DCTN1 are a cause of susceptibility to amyotrophic lateral sclerosis (ALS) [MIM:105400]. ALS is a neurodegenerative disorder affecting upper and lower motor neurons, and resulting in fatal paralysis. Sensory abnormalities are absent. Death usually occurs within 2 to 5 years. The etiology is likely to be multifactorial, involving both genetic and environmental factors.[5] [6] Defects in DCTN1 are the cause of Perry syndrome (PERRYS) [MIM:168605]; also called parkinsonism with alveolar hypoventilation and mental depression. Perry syndrome is a neuropsychiatric disorder characterized by mental depression not responsive to antidepressant drugs or electroconvulsive therapy, sleep disturbances, exhaustion and marked weight loss. Parkinsonism develops later and respiratory failure occurred terminally.[7]
Function
[MARE1_HUMAN] Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes cytoplasmic microtubule nucleation and elongation. May be involved in spindle function by stabilizing microtubules and anchoring them at centrosomes. May play a role in cell migration.[8] [9] [10] [11] [DCTN1_HUMAN] Required for the cytoplasmic dynein-driven retrograde movement of vesicles and organelles along microtubules. Dynein-dynactin interaction is a key component of the mechanism of axonal transport of vesicles and organelles. [MARE3_HUMAN] Binds to the plus end of microtubules and regulates the dynamics of the microtubule cytoskeleton. Promotes microtubule growth. May be involved in spindle function by stabilizing microtubules and anchoring them at centrosomes. May play a role in cell migration (By similarity).[12]
Publication Abstract from PubMed
End binding proteins (EBs) track growing microtubule ends and play a master role in organizing dynamic protein networks. Mammalian cells express up to three different EBs (EB1, EB2, and EB3). Besides forming homodimers, EB1 and EB3 also assemble into heterodimers. One group of EB-binding partners encompasses proteins that harbor CAP-Gly domains. The binding properties of the different EBs towards CAP-Gly proteins have not been systematically investigated. This information is, however, important to compare and contrast functional differences. Here we analyzed the interactions between CLIP-170 and p150(glued) CAP-Gly domains with the three EB homodimers and the EB1-EB3 heterodimer. Using isothermal titration calorimetry we observed that some EBs bind to the individual CAP-Gly domains with similar affinities while others interact with their targets with pronounced differences. We further found that the two types of CAP-Gly domains use alternative mechanisms to target the C-terminal domains of EBs. We succeeded to solve the crystal structure of a complex composed of a heterodimer of EB1 and EB3 C-termini together with the CAP-Gly domain of p150(glued). Together, our results provide mechanistic insights into the interaction properties of EBs and offer a molecular framework for the systematic investigation of their functional differences in cells.
Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150(glued).,Bjelic S, De Groot CO, Scharer MA, Jaussi R, Bargsten K, Salzmann M, Frey D, Capitani G, Kammerer RA, Steinmetz MO J Struct Biol. 2012 Jan;177(1):160-7. Epub 2011 Nov 17. PMID:22119847[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Puls I, Jonnakuty C, LaMonte BH, Holzbaur EL, Tokito M, Mann E, Floeter MK, Bidus K, Drayna D, Oh SJ, Brown RH Jr, Ludlow CL, Fischbeck KH. Mutant dynactin in motor neuron disease. Nat Genet. 2003 Apr;33(4):455-6. Epub 2003 Mar 10. PMID:12627231 doi:10.1038/ng1123
- ↑ Levy JR, Sumner CJ, Caviston JP, Tokito MK, Ranganathan S, Ligon LA, Wallace KE, LaMonte BH, Harmison GG, Puls I, Fischbeck KH, Holzbaur EL. A motor neuron disease-associated mutation in p150Glued perturbs dynactin function and induces protein aggregation. J Cell Biol. 2006 Feb 27;172(5):733-45. PMID:16505168 doi:10.1083/jcb.200511068
- ↑ Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F, Tsuboi Y, Yamada T, Gutmann L, Elibol B, Bhatia KP, Wider C, Vilarino-Guell C, Ross OA, Brown LA, Castanedes-Casey M, Dickson DW, Wszolek ZK. DCTN1 mutations in Perry syndrome. Nat Genet. 2009 Feb;41(2):163-5. doi: 10.1038/ng.293. Epub 2009 Jan 11. PMID:19136952 doi:10.1038/ng.293
- ↑ Moore JK, Sept D, Cooper JA. Neurodegeneration mutations in dynactin impair dynein-dependent nuclear migration. Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5147-52. doi:, 10.1073/pnas.0810828106. Epub 2009 Mar 11. PMID:19279216 doi:10.1073/pnas.0810828106
- ↑ Munch C, Sedlmeier R, Meyer T, Homberg V, Sperfeld AD, Kurt A, Prudlo J, Peraus G, Hanemann CO, Stumm G, Ludolph AC. Point mutations of the p150 subunit of dynactin (DCTN1) gene in ALS. Neurology. 2004 Aug 24;63(4):724-6. PMID:15326253
- ↑ Munch C, Rosenbohm A, Sperfeld AD, Uttner I, Reske S, Krause BJ, Sedlmeier R, Meyer T, Hanemann CO, Stumm G, Ludolph AC. Heterozygous R1101K mutation of the DCTN1 gene in a family with ALS and FTD. Ann Neurol. 2005 Nov;58(5):777-80. PMID:16240349 doi:10.1002/ana.20631
- ↑ Farrer MJ, Hulihan MM, Kachergus JM, Dachsel JC, Stoessl AJ, Grantier LL, Calne S, Calne DB, Lechevalier B, Chapon F, Tsuboi Y, Yamada T, Gutmann L, Elibol B, Bhatia KP, Wider C, Vilarino-Guell C, Ross OA, Brown LA, Castanedes-Casey M, Dickson DW, Wszolek ZK. DCTN1 mutations in Perry syndrome. Nat Genet. 2009 Feb;41(2):163-5. doi: 10.1038/ng.293. Epub 2009 Jan 11. PMID:19136952 doi:10.1038/ng.293
- ↑ Askham JM, Vaughan KT, Goodson HV, Morrison EE. Evidence that an interaction between EB1 and p150(Glued) is required for the formation and maintenance of a radial microtubule array anchored at the centrosome. Mol Biol Cell. 2002 Oct;13(10):3627-45. PMID:12388762 doi:10.1091/mbc.E02-01-0061
- ↑ van der Vaart B, Manatschal C, Grigoriev I, Olieric V, Gouveia SM, Bjelic S, Demmers J, Vorobjev I, Hoogenraad CC, Steinmetz MO, Akhmanova A. SLAIN2 links microtubule plus end-tracking proteins and controls microtubule growth in interphase. J Cell Biol. 2011 Jun 13;193(6):1083-99. Epub 2011 Jun 6. PMID:21646404 doi:10.1083/jcb.201012179
- ↑ Hayashi I, Wilde A, Mal TK, Ikura M. Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Mol Cell. 2005 Aug 19;19(4):449-60. PMID:16109370 doi:10.1016/j.molcel.2005.06.034
- ↑ Honnappa S, Gouveia SM, Weisbrich A, Damberger FF, Bhavesh NS, Jawhari H, Grigoriev I, van Rijssel FJ, Buey RM, Lawera A, Jelesarov I, Winkler FK, Wuthrich K, Akhmanova A, Steinmetz MO. An EB1-binding motif acts as a microtubule tip localization signal. Cell. 2009 Jul 23;138(2):366-76. PMID:19632184 doi:S0092-8674(09)00638-2
- ↑ Komarova Y, De Groot CO, Grigoriev I, Gouveia SM, Munteanu EL, Schober JM, Honnappa S, Buey RM, Hoogenraad CC, Dogterom M, Borisy GG, Steinmetz MO, Akhmanova A. Mammalian end binding proteins control persistent microtubule growth. J Cell Biol. 2009 Mar 9;184(5):691-706. Epub 2009 Mar 2. PMID:19255245 doi:10.1083/jcb.200807179
- ↑ Bjelic S, De Groot CO, Scharer MA, Jaussi R, Bargsten K, Salzmann M, Frey D, Capitani G, Kammerer RA, Steinmetz MO. Interaction of mammalian end binding proteins with CAP-Gly domains of CLIP-170 and p150(glued). J Struct Biol. 2012 Jan;177(1):160-7. Epub 2011 Nov 17. PMID:22119847 doi:10.1016/j.jsb.2011.11.010
|