1o5t

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
|SITE=
|SITE=
|LIGAND=
|LIGAND=
-
|ACTIVITY= [http://en.wikipedia.org/wiki/Tryptophan--tRNA_ligase Tryptophan--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.2 6.1.1.2]
+
|ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Tryptophan--tRNA_ligase Tryptophan--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.2 6.1.1.2] </span>
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1o5t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1o5t OCA], [http://www.ebi.ac.uk/pdbsum/1o5t PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1o5t RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 A resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.
Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 A resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.
- 
-
==Disease==
 
-
Known disease associated with this structure: Wolcott-Rallison syndrome OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=604032 604032]]
 
==About this Structure==
==About this Structure==
Line 37: Line 37:
[[Category: rossmann fold]]
[[Category: rossmann fold]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 13:06:11 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 22:40:19 2008''

Revision as of 19:40, 30 March 2008


PDB ID 1o5t

Drag the structure with the mouse to rotate
, resolution 2.50Å
Activity: Tryptophan--tRNA ligase, with EC number 6.1.1.2
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Crystal structure of the aminoacylation catalytic fragment of human tryptophanyl-tRNA synthetase


Overview

Human tryptophanyl-tRNA synthetase (hTrpRS) produces a full-length and three N terminus-truncated forms through alternative splicing and proteolysis. The shortest fragment that contains the aminoacylation catalytic fragment (T2-hTrpRS) exhibits the most potent angiostatic activity. We report here the crystal structure of T2-hTrpRS at 2.5 A resolution, which was solved using the multi-wavelength anomalous diffraction method. T2-hTrpRS shares a very low sequence homology of 22% with Bacillus stearothermophilus TrpRS (bTrpRS); however, their overall structures are strikingly similar. Structural comparison of T2-hTrpRS with bTrpRS reveals substantial structural differences in the substrate-binding pocket and at the entrance to the pocket that play important roles in substrate binding and tRNA binding. T2-hTrpRS has a wide opening to the active site and adopts a compact conformation similar to the closed conformation of bTrpRS. These results suggest that mammalian and bacterial TrpRSs might use different mechanisms to recognize the substrate. Modeling studies indicate that tRNA binds with the dimeric enzyme and interacts primarily with the connective polypeptide 1 of hTrpRS via its acceptor arm and the alpha-helical domain of hTrpRS via its anticodon loop. Our results also suggest that the angiostatic activity is likely located at the alpha-helical domain, which resembles the short chain cytokines.

About this Structure

1O5T is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity., Yu Y, Liu Y, Shen N, Xu X, Xu F, Jia J, Jin Y, Arnold E, Ding J, J Biol Chem. 2004 Feb 27;279(9):8378-88. Epub 2003 Dec 5. PMID:14660560

Page seeded by OCA on Sun Mar 30 22:40:19 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools