1odr

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=[[1odp|1ODP]], [[1odq|1ODQ]]
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1odr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1odr OCA], [http://www.ebi.ac.uk/pdbsum/1odr PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1odr RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
The segment, YSDELRQRLAARLEALKENG, corresponding to residues 166 to 185 of human serum apolipoprotein A-I, was studied by circular dichroism and NMR spectroscopy in sodium dodecyl sulfate and dodecylphosphocholine micelles. 2-Dimensional NOESY, TOCSY and DQF-COSY spectra of apoA-I(166-185) in perdeuterated sodium dodecyl sulfate (SDS-d25) and dodecylphosphocholine (DPC-d38) micelles were collected at a peptide/SDS (DPC) ratio of 1:40. Similar CD spectra and NOE connectivity patterns were observed for apoA-I(166-185) in SDS and DPC, indicating a similar helical conformation in both. Conformations of apoA-I(166-185) in DPC-d38 micelles, and in SDS-d25 micelles at two pH values, 6.6 and 3.7, were determined using distance geometry calculations. Backbone superposition (N,C alpha,C = O) for an ensemble of twenty-nine structures in DPC at pH 6.0 gave a RMSD of 0.45 +/- 0.09 A for the region D168 to K182, while for all atoms it was 1.60 +/- 0.17 A. In SDS, the ensemble of nineteen structures each at pH 6.6 and 3.7 gave RMSDs of 0.28 +/- 0.07 A and 0.35 +/- 0.10 A, respectively, for the region D168 to K182. RMSD for superposition of all atoms was 1.36 +/- 0.10 A and 1.38 +/- 0.21 A at the respective pH values. In all cases a highly defined class A amphipathic helical structure was found for the region R171 to K182. Since the same structure occurs in micelles with either negatively charged or zwitterionic head groups it strongly suggests a dominant role for hydrophobic interactions in stabilizing the complex. The Y166 aromatic ring is bent back upon the helix axis at the lower pH. NMR determination of pKa values for D168, E169, E179 and E183 in the presence of SDS or DPC indicated a micro-pH at the micellar surface approximately one pH unit higher than the normal residue pKa. SDS interactions with the peptide were examined by collecting 1H NOESY spectra in the presence of protiated SDS. Residues R171, R173, R177, as well as the aromatic ring of Y166, were shown by intermolecular NOE measurements to interact with SDS, hence a key interaction in stabilizing the complex appears to be between interfacial basic side-chains and SDS alkyl chains.
The segment, YSDELRQRLAARLEALKENG, corresponding to residues 166 to 185 of human serum apolipoprotein A-I, was studied by circular dichroism and NMR spectroscopy in sodium dodecyl sulfate and dodecylphosphocholine micelles. 2-Dimensional NOESY, TOCSY and DQF-COSY spectra of apoA-I(166-185) in perdeuterated sodium dodecyl sulfate (SDS-d25) and dodecylphosphocholine (DPC-d38) micelles were collected at a peptide/SDS (DPC) ratio of 1:40. Similar CD spectra and NOE connectivity patterns were observed for apoA-I(166-185) in SDS and DPC, indicating a similar helical conformation in both. Conformations of apoA-I(166-185) in DPC-d38 micelles, and in SDS-d25 micelles at two pH values, 6.6 and 3.7, were determined using distance geometry calculations. Backbone superposition (N,C alpha,C = O) for an ensemble of twenty-nine structures in DPC at pH 6.0 gave a RMSD of 0.45 +/- 0.09 A for the region D168 to K182, while for all atoms it was 1.60 +/- 0.17 A. In SDS, the ensemble of nineteen structures each at pH 6.6 and 3.7 gave RMSDs of 0.28 +/- 0.07 A and 0.35 +/- 0.10 A, respectively, for the region D168 to K182. RMSD for superposition of all atoms was 1.36 +/- 0.10 A and 1.38 +/- 0.21 A at the respective pH values. In all cases a highly defined class A amphipathic helical structure was found for the region R171 to K182. Since the same structure occurs in micelles with either negatively charged or zwitterionic head groups it strongly suggests a dominant role for hydrophobic interactions in stabilizing the complex. The Y166 aromatic ring is bent back upon the helix axis at the lower pH. NMR determination of pKa values for D168, E169, E179 and E183 in the presence of SDS or DPC indicated a micro-pH at the micellar surface approximately one pH unit higher than the normal residue pKa. SDS interactions with the peptide were examined by collecting 1H NOESY spectra in the presence of protiated SDS. Residues R171, R173, R177, as well as the aromatic ring of Y166, were shown by intermolecular NOE measurements to interact with SDS, hence a key interaction in stabilizing the complex appears to be between interfacial basic side-chains and SDS alkyl chains.
- 
-
==Disease==
 
-
Known diseases associated with this structure: Amyloidosis, 3 or more types OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107680 107680]], ApoA-I and apoC-III deficiency, combined OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107680 107680]], Corneal clouding, autosomal recessive OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107680 107680]], Hypertriglyceridemia, one form OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107680 107680]], Hypoalphalipoproteinemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=107680 107680]]
 
==About this Structure==
==About this Structure==
Line 32: Line 32:
[[Category: lipid transport]]
[[Category: lipid transport]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 13:09:24 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 22:43:51 2008''

Revision as of 19:43, 30 March 2008


PDB ID 1odr

Drag the structure with the mouse to rotate
Related: 1ODP, 1ODQ


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



PEPTIDE OF HUMAN APOA-I RESIDUES 166-185. NMR, 5 STRUCTURES AT PH 6.0, 37 DEGREES CELSIUS AND PEPTIDE:DPC MOLE RATIO OF 1:40


Overview

The segment, YSDELRQRLAARLEALKENG, corresponding to residues 166 to 185 of human serum apolipoprotein A-I, was studied by circular dichroism and NMR spectroscopy in sodium dodecyl sulfate and dodecylphosphocholine micelles. 2-Dimensional NOESY, TOCSY and DQF-COSY spectra of apoA-I(166-185) in perdeuterated sodium dodecyl sulfate (SDS-d25) and dodecylphosphocholine (DPC-d38) micelles were collected at a peptide/SDS (DPC) ratio of 1:40. Similar CD spectra and NOE connectivity patterns were observed for apoA-I(166-185) in SDS and DPC, indicating a similar helical conformation in both. Conformations of apoA-I(166-185) in DPC-d38 micelles, and in SDS-d25 micelles at two pH values, 6.6 and 3.7, were determined using distance geometry calculations. Backbone superposition (N,C alpha,C = O) for an ensemble of twenty-nine structures in DPC at pH 6.0 gave a RMSD of 0.45 +/- 0.09 A for the region D168 to K182, while for all atoms it was 1.60 +/- 0.17 A. In SDS, the ensemble of nineteen structures each at pH 6.6 and 3.7 gave RMSDs of 0.28 +/- 0.07 A and 0.35 +/- 0.10 A, respectively, for the region D168 to K182. RMSD for superposition of all atoms was 1.36 +/- 0.10 A and 1.38 +/- 0.21 A at the respective pH values. In all cases a highly defined class A amphipathic helical structure was found for the region R171 to K182. Since the same structure occurs in micelles with either negatively charged or zwitterionic head groups it strongly suggests a dominant role for hydrophobic interactions in stabilizing the complex. The Y166 aromatic ring is bent back upon the helix axis at the lower pH. NMR determination of pKa values for D168, E169, E179 and E183 in the presence of SDS or DPC indicated a micro-pH at the micellar surface approximately one pH unit higher than the normal residue pKa. SDS interactions with the peptide were examined by collecting 1H NOESY spectra in the presence of protiated SDS. Residues R171, R173, R177, as well as the aromatic ring of Y166, were shown by intermolecular NOE measurements to interact with SDS, hence a key interaction in stabilizing the complex appears to be between interfacial basic side-chains and SDS alkyl chains.

About this Structure

1ODR is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Conformation of human serum apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS interactions., Wang G, Treleaven WD, Cushley RJ, Biochim Biophys Acta. 1996 Jun 11;1301(3):174-84. PMID:8664326

Page seeded by OCA on Sun Mar 30 22:43:51 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools