1op9
From Proteopedia
Line 5: | Line 5: | ||
|SITE= | |SITE= | ||
|LIGAND= | |LIGAND= | ||
- | |ACTIVITY= [http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] | + | |ACTIVITY= <span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span> |
|GENE= LYZ OR LZM ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | |GENE= LYZ OR LZM ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]) | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1op9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1op9 OCA], [http://www.ebi.ac.uk/pdbsum/1op9 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1op9 RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases. | Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Amyloidosis, renal OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=153450 153450]], Microphthalmia, syndromic 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=309800 309800]] | ||
==About this Structure== | ==About this Structure== | ||
Line 46: | Line 46: | ||
[[Category: immunoglobulin]] | [[Category: immunoglobulin]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 22:48:23 2008'' |
Revision as of 19:48, 30 March 2008
| |||||||
, resolution 1.86Å | |||||||
---|---|---|---|---|---|---|---|
Gene: | LYZ OR LZM (Homo sapiens) | ||||||
Activity: | Lysozyme, with EC number 3.2.1.17 | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Complex of human lysozyme with camelid VHH HL6 antibody fragment
Overview
Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases.
About this Structure
1OP9 is a Single protein structure of sequence from Camelus dromedarius and Homo sapiens. Full crystallographic information is available from OCA.
Reference
A camelid antibody fragment inhibits the formation of amyloid fibrils by human lysozyme., Dumoulin M, Last AM, Desmyter A, Decanniere K, Canet D, Larsson G, Spencer A, Archer DB, Sasse J, Muyldermans S, Wyns L, Redfield C, Matagne A, Robinson CV, Dobson CM, Nature. 2003 Aug 14;424(6950):783-8. PMID:12917687
Page seeded by OCA on Sun Mar 30 22:48:23 2008
Categories: Camelus dromedarius | Homo sapiens | Lysozyme | Single protein | Archer, D B. | Canet, D. | Decanniere, K. | Desmyter, A. | Dobson, C M. | Dumoulin, M. | Larsson, G. | Last, A M. | Matagne, A. | Muyldermans, S. | Redfield, C. | Robinson, C V. | Sasse, J. | Spencer, A. | Wyns, L. | Amyloid fibril formation inhibition | Antigen-antibody complex | Immunoglobulin