5swq
From Proteopedia
(Difference between revisions)
m (Protected "5swq" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal Structure of HLA-A*0201 in complex with NA231, an influenza epitope== | |
+ | <StructureSection load='5swq' size='340' side='right' caption='[[5swq]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5swq]] is a 3 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5SWQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5SWQ FirstGlance]. <br> | ||
+ | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5swq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5swq OCA], [http://pdbe.org/5swq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5swq RCSB], [http://www.ebi.ac.uk/pdbsum/5swq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5swq ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref> <ref>PMID:1336137</ref> <ref>PMID:7554280</ref> <ref>PMID:4586824</ref> <ref>PMID:8084451</ref> <ref>PMID:12119416</ref> <ref>PMID:12796775</ref> <ref>PMID:16901902</ref> <ref>PMID:16491088</ref> <ref>PMID:17646174</ref> <ref>PMID:18835253</ref> <ref>PMID:18395224</ref> <ref>PMID:19284997</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/1A02_HUMAN 1A02_HUMAN]] Involved in the presentation of foreign antigens to the immune system. [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | alphabetaT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear; with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity has been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M158, respectively) or with the hepatitis C and influenza viruses (NS31073 and NA231, respectively). Given the high sequence similarity of these paired viral epitopes (56% and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell alphabetaTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine if they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct alphabetaTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific. | ||
- | + | Lack of heterologous cross-reactivity towards HLA-A*02:01 restricted viral epitopes is underpinned by distinct alphabetaT cell receptor signatures.,Grant EJ, Josephs TM, Valkenburg SA, Wooldridge L, Hellard M, Rossjohn J, Bharadwaj M, Kedzierska K, Gras S J Biol Chem. 2016 Sep 19. pii: jbc.M116.753988. PMID:27645996<ref>PMID:27645996</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 5swq" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Gras, S]] | ||
+ | [[Category: Josephs, T M]] | ||
+ | [[Category: Rossjohn, J]] | ||
+ | [[Category: Cross-reactivity]] | ||
+ | [[Category: Heterologous immunity]] | ||
+ | [[Category: Hla-a*02:01]] | ||
+ | [[Category: Immune system]] | ||
+ | [[Category: T cell]] | ||
+ | [[Category: Tcr]] |
Revision as of 21:44, 5 October 2016
Crystal Structure of HLA-A*0201 in complex with NA231, an influenza epitope
|