5fcw

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5fcw is ON HOLD until Paper Publication
+
==HDAC8 Complexed with a Hydroxamic Acid==
 +
<StructureSection load='5fcw' size='340' side='right' caption='[[5fcw]], [[Resolution|resolution]] 1.98&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5fcw]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FCW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5FCW FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=5YA:4-NAPHTHALEN-1-YL-~{N}-OXIDANYL-BENZAMIDE'>5YA</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=P6G:HEXAETHYLENE+GLYCOL'>P6G</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Histone_deacetylase Histone deacetylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.98 3.5.1.98] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5fcw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fcw OCA], [http://pdbe.org/5fcw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5fcw RCSB], [http://www.ebi.ac.uk/pdbsum/5fcw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5fcw ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/HDAC8_HUMAN HDAC8_HUMAN]] Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. May play a role in smooth muscle cell contractility.<ref>PMID:10748112</ref> <ref>PMID:10926844</ref> <ref>PMID:10922473</ref> <ref>PMID:14701748</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza(R)), romidepsin (FK228, Istodax(R)), belinostat (Beleodaq(R)), and panobinostat (Farydak(R)). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98A resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition.
-
Authors: Cole, K.E., Perry, K.
+
Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.,Tabackman AA, Frankson R, Marsan ES, Perry K, Cole KE J Struct Biol. 2016 Sep;195(3):373-8. doi: 10.1016/j.jsb.2016.06.023. Epub 2016, Jun 29. PMID:27374062<ref>PMID:27374062</ref>
-
Description: HDAC8 Complexed with a Hydroxamic Acid
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5fcw" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Histone deacetylase]]
 +
[[Category: Cole, K E]]
[[Category: Perry, K]]
[[Category: Perry, K]]
-
[[Category: Cole, K.E]]
+
[[Category: Hdac8]]
 +
[[Category: Hydrolase]]
 +
[[Category: Hydroxamic acid]]

Revision as of 18:31, 26 October 2016

HDAC8 Complexed with a Hydroxamic Acid

5fcw, resolution 1.98Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools