We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

5ems

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Insulin, a protein critical for metabolic homeostasis, provides a classical model for protein design with application to human health. Recent efforts to improve its pharmaceutical formulation demonstrated that iodination of a conserved tyrosine (TyrB26) enhances key properties of a rapid-acting clinical analog. Moreover, the broad utility of halogens in medicinal chemistry has motivated use of hybrid quantum- and molecular-mechanical methods to study proteins. Here, we (i) undertook quantitative atomic-level simulations of 3-I-TyrB26-insulin to predict its structural features and (ii) tested these predictions by X-ray crystallography. Using an electrostatic model of the modified aromatic ring based on quantum chemistry, the calculations suggested that the analog - as a dimer and hexamer - exhibits subtle differences in aromatic-aromatic interactions at the dimer interface. Aromatic rings at this interface (TyrB16, PheB24, PheB25, 3-I-TyrB26 and their symmetry-related mates) adjust to enable packing of the hydrophobic iodine atoms within the core of each monomer. Strikingly, these features were observed in the crystal structure of a 3-iodo-TyrB26 insulin analog (determined as an R6 zinc hexamer). Given that residues B24-B30 detach from the core on receptor binding, the environment of 3-I-TyrB26 in a receptor complex must differ from that in the free hormone. Based on the recent structure of a "micro-receptor" complex, we predict that 3-I-TyrB26 engages the receptor via directional halogen bonding and halogen-directed hydrogen bonding: favorable electrostatic interactions exploiting, respectively, the halogen's electron-deficient sigma-hole and electronegative equatorial band. Inspired by quantum chemistry and molecular dynamics, such "halogen engineering" promises to extend principles of medicinal chemistry to proteins.
 +
 +
Extending Halogen-Based Medicinal Chemistry to Proteins: Iodo-Insulin as a Case Study.,El Hage K, Pandyarajan V, Phillips NB, Smith BJ, Menting JG, Whittaker J, Lawrence MC, Meuwly M, Weiss MA J Biol Chem. 2016 Nov 14. pii: jbc.M116.761015. PMID:27875310<ref>PMID:27875310</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5ems" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 14:43, 22 December 2016

Crystal Structure of an iodinated insulin analog

5ems, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools