5tzs
From Proteopedia
(Difference between revisions)
Line 11: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/RS7A_YEAST RS7A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/UTP21_YEAST UTP21_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/RCL1_YEAST RCL1_YEAST]] Does not have cyclase activity. Plays a role in 40S-ribosomal-subunit biogenesis in the early pre-rRNA processing steps at sites A0, A1 and A2 that are required for proper maturation of the 18S RNA. Essential for viability. [[http://www.uniprot.org/uniprot/NEP1_YEAST NEP1_YEAST]] S-adenosyl-L-methionine-dependent pseudouridine N(1)-methyltransferase that methylates pseudouridine at position 1189 (Psi1189) in 18S rRNA. Involved the biosynthesis of the hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) conserved in eukaryotic 18S rRNA. N1-methylation is independent on acp-modification at the N3-position of U1191. Has also an essential role in 40S ribosomal subunit biogenesis independent on its methyltransferase activity, facilitating the incorporation of ribosomal protein S19 (RPS19A/RPS19B) during the formation of pre-ribosomes.<ref>PMID:11694595</ref> <ref>PMID:11935223</ref> <ref>PMID:15590835</ref> <ref>PMID:20972225</ref> <ref>PMID:21087996</ref> [[http://www.uniprot.org/uniprot/RRP9_YEAST RRP9_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA. Required for efficient pre-rRNA cleavage at sites A0, A1 and A2, and biosynthesis of 18S rRNA.<ref>PMID:11105764</ref> [[http://www.uniprot.org/uniprot/RS9A_YEAST RS9A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/SNU13_YEAST SNU13_YEAST]] Common component of the spliceosome and rRNA processing machinery. In association with the spliceosomal U4/U6.U5 tri-snRNP particle, required for splicing of pre-mRNA. In association with box C/D snoRNPs, required for processing of pre-ribosomal RNA (rRNA) and site-specific 2'-O-methylation of substrate RNAs. Essential for the accumulation and stability of U4 snRNA, U6 snRNA, and box C/D snoRNAs.<ref>PMID:11081632</ref> <ref>PMID:12215523</ref> <ref>PMID:14730029</ref> [[http://www.uniprot.org/uniprot/RS6A_YEAST RS6A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> | [[http://www.uniprot.org/uniprot/RS7A_YEAST RS7A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/UTP21_YEAST UTP21_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/RCL1_YEAST RCL1_YEAST]] Does not have cyclase activity. Plays a role in 40S-ribosomal-subunit biogenesis in the early pre-rRNA processing steps at sites A0, A1 and A2 that are required for proper maturation of the 18S RNA. Essential for viability. [[http://www.uniprot.org/uniprot/NEP1_YEAST NEP1_YEAST]] S-adenosyl-L-methionine-dependent pseudouridine N(1)-methyltransferase that methylates pseudouridine at position 1189 (Psi1189) in 18S rRNA. Involved the biosynthesis of the hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) conserved in eukaryotic 18S rRNA. N1-methylation is independent on acp-modification at the N3-position of U1191. Has also an essential role in 40S ribosomal subunit biogenesis independent on its methyltransferase activity, facilitating the incorporation of ribosomal protein S19 (RPS19A/RPS19B) during the formation of pre-ribosomes.<ref>PMID:11694595</ref> <ref>PMID:11935223</ref> <ref>PMID:15590835</ref> <ref>PMID:20972225</ref> <ref>PMID:21087996</ref> [[http://www.uniprot.org/uniprot/RRP9_YEAST RRP9_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA. Required for efficient pre-rRNA cleavage at sites A0, A1 and A2, and biosynthesis of 18S rRNA.<ref>PMID:11105764</ref> [[http://www.uniprot.org/uniprot/RS9A_YEAST RS9A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/SNU13_YEAST SNU13_YEAST]] Common component of the spliceosome and rRNA processing machinery. In association with the spliceosomal U4/U6.U5 tri-snRNP particle, required for splicing of pre-mRNA. In association with box C/D snoRNPs, required for processing of pre-ribosomal RNA (rRNA) and site-specific 2'-O-methylation of substrate RNAs. Essential for the accumulation and stability of U4 snRNA, U6 snRNA, and box C/D snoRNAs.<ref>PMID:11081632</ref> <ref>PMID:12215523</ref> <ref>PMID:14730029</ref> [[http://www.uniprot.org/uniprot/RS6A_YEAST RS6A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The small subunit (SSU) processome, a large ribonucleoprotein particle, organizes the assembly of the eukaryotic small ribosomal subunit by coordinating the folding, cleavage, and modification of nascent pre-ribosomal RNA (rRNA). Here, we present the cryo-electron microscopy structure of the yeast SSU processome at 5.1-angstrom resolution. The structure reveals how large ribosome biogenesis complexes assist the 5' external transcribed spacer and U3 small nucleolar RNA in providing an intertwined RNA-protein assembly platform for the separate maturation of 18S rRNA domains. The strategic placement of a molecular motor at the center of the particle further suggests a mechanism for mediating conformational changes within this giant particle. This study provides a structural framework for a mechanistic understanding of eukaryotic ribosome assembly in the model organism Saccharomyces cerevisiae. | ||
+ | |||
+ | Architecture of the yeast small subunit processome.,Chaker-Margot M, Barandun J, Hunziker M, Klinge S Science. 2017 Jan 13;355(6321). pii: eaal1880. doi: 10.1126/science.aal1880. Epub, 2016 Dec 15. PMID:27980088<ref>PMID:27980088</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5tzs" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 07:43, 18 January 2017
Warning: this is a large structure, and loading might take a long time or not happen at all.
Architecture of the yeast small subunit processome
|