1rvw
From Proteopedia
Line 4: | Line 4: | ||
|PDB= 1rvw |SIZE=350|CAPTION= <scene name='initialview01'>1rvw</scene>, resolution 2.5Å | |PDB= 1rvw |SIZE=350|CAPTION= <scene name='initialview01'>1rvw</scene>, resolution 2.5Å | ||
|SITE= | |SITE= | ||
- | |LIGAND= <scene name='pdbligand= | + | |LIGAND= <scene name='pdbligand=CMO:CARBON+MONOXIDE'>CMO</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene> |
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1rvw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1rvw OCA], [http://www.ebi.ac.uk/pdbsum/1rvw PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1rvw RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
One of the most promising approaches for the development of a synthetic blood substitute has been the engineering of novel mutants of human hemoglobin (Hb) A which maintain cooperativity, but possess lowered oxygen affinity. We describe here two crystal structures of one such potential blood substitute, recombinant (r) Hb(alpha 96Val-->Trp), refined to 1.9 A resolution in an alpha-aquomet, beta-deoxy T-state, and to 2.5 A resolution in a carbonmonoxy R-state. On the basis of molecular dynamics simulations, a particular conformation had been predicted for the engineered Trp residue, and the lowered oxygen affinity had been attributed to a stabilization of the deoxy T-state interface by alpha 96Trp-beta 99Asp hydrogen bonds. Difference Fourier maps of the T-state structure clearly show that alpha 96Trp is in a conformation different from that predicted by the simulation, with its indole side chain directed away from the interface and into the central cavity. In this conformation, the indole nitrogen makes novel water-mediated hydrogen bonds across the T-state interface with beta 101Glu. We propose that these water-mediated hydrogen bonds are the structural basis for the lowered oxygen affinity of rHb(alpha 96Val-->Trp), and discuss the implications of these findings for future molecular dynamics studies and the design of Hb mutants. | One of the most promising approaches for the development of a synthetic blood substitute has been the engineering of novel mutants of human hemoglobin (Hb) A which maintain cooperativity, but possess lowered oxygen affinity. We describe here two crystal structures of one such potential blood substitute, recombinant (r) Hb(alpha 96Val-->Trp), refined to 1.9 A resolution in an alpha-aquomet, beta-deoxy T-state, and to 2.5 A resolution in a carbonmonoxy R-state. On the basis of molecular dynamics simulations, a particular conformation had been predicted for the engineered Trp residue, and the lowered oxygen affinity had been attributed to a stabilization of the deoxy T-state interface by alpha 96Trp-beta 99Asp hydrogen bonds. Difference Fourier maps of the T-state structure clearly show that alpha 96Trp is in a conformation different from that predicted by the simulation, with its indole side chain directed away from the interface and into the central cavity. In this conformation, the indole nitrogen makes novel water-mediated hydrogen bonds across the T-state interface with beta 101Glu. We propose that these water-mediated hydrogen bonds are the structural basis for the lowered oxygen affinity of rHb(alpha 96Val-->Trp), and discuss the implications of these findings for future molecular dynamics studies and the design of Hb mutants. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Erythremias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Erythremias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Erythrocytosis OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], HPFH, deletion type OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Heinz body anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Heinz body anemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Heinz body anemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Hemoglobin H disease OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Hypochromic microcytic anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Methemoglobinemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Methemoglobinemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Sickle cell anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemia, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Thalassemia-beta, dominant inclusion-body OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Thalassemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]] | ||
==About this Structure== | ==About this Structure== | ||
Line 30: | Line 30: | ||
[[Category: Puius, Y A.]] | [[Category: Puius, Y A.]] | ||
[[Category: Zou, M.]] | [[Category: Zou, M.]] | ||
- | [[Category: CMO]] | ||
- | [[Category: HEM]] | ||
- | [[Category: PO4]] | ||
[[Category: alpha-(v96w)]] | [[Category: alpha-(v96w)]] | ||
[[Category: carbonmonoxy]] | [[Category: carbonmonoxy]] | ||
Line 40: | Line 37: | ||
[[Category: oxygen transport]] | [[Category: oxygen transport]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 23:33:37 2008'' |
Revision as of 20:33, 30 March 2008
| |||||||
, resolution 2.5Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | , , | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
R STATE HUMAN HEMOGLOBIN [ALPHA V96W], CARBONMONOXY
Overview
One of the most promising approaches for the development of a synthetic blood substitute has been the engineering of novel mutants of human hemoglobin (Hb) A which maintain cooperativity, but possess lowered oxygen affinity. We describe here two crystal structures of one such potential blood substitute, recombinant (r) Hb(alpha 96Val-->Trp), refined to 1.9 A resolution in an alpha-aquomet, beta-deoxy T-state, and to 2.5 A resolution in a carbonmonoxy R-state. On the basis of molecular dynamics simulations, a particular conformation had been predicted for the engineered Trp residue, and the lowered oxygen affinity had been attributed to a stabilization of the deoxy T-state interface by alpha 96Trp-beta 99Asp hydrogen bonds. Difference Fourier maps of the T-state structure clearly show that alpha 96Trp is in a conformation different from that predicted by the simulation, with its indole side chain directed away from the interface and into the central cavity. In this conformation, the indole nitrogen makes novel water-mediated hydrogen bonds across the T-state interface with beta 101Glu. We propose that these water-mediated hydrogen bonds are the structural basis for the lowered oxygen affinity of rHb(alpha 96Val-->Trp), and discuss the implications of these findings for future molecular dynamics studies and the design of Hb mutants.
About this Structure
1RVW is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Novel water-mediated hydrogen bonds as the structural basis for the low oxygen affinity of the blood substitute candidate rHb(alpha 96Val-->Trp)., Puius YA, Zou M, Ho NT, Ho C, Almo SC, Biochemistry. 1998 Jun 30;37(26):9258-65. PMID:9649306
Page seeded by OCA on Sun Mar 30 23:33:37 2008
Categories: Homo sapiens | Protein complex | Almo, S C. | Ho, C. | Ho, N T. | Puius, Y A. | Zou, M. | Alpha-(v96w) | Carbonmonoxy | Hemoglobin | Human | Mutant | Oxygen transport