User:Blandine Velut/Sandbox
From Proteopedia
Line 56: | Line 56: | ||
- | The presence of free Mg2+ is essential for activation of the GMP synthetase and a complex between ATP and Mg2+ can be formed but MgATP2− alone is not sufficient for catalysis. Moreover, the total chelation of free Mg2+ by ATP results of inactivation of the enzyme. | + | The presence of free Mg2+ is essential for activation of the GMP synthetase and a complex between ATP and Mg2+ can be formed but MgATP2− alone is not sufficient for catalysis. Moreover, the total chelation of free Mg2+ by ATP results of inactivation of the enzyme. <ref>DOI: 10.1074/jbc.270.13.7347</ref> |
'''Inhibitor:''' | '''Inhibitor:''' |
Revision as of 19:07, 26 January 2017
2vxo
HUMAN GMP SYNTHETASE
An ample supply of nucleotides is essential for many life processes, including cell maturation, cell division and transmission of the genetic information. Indeed, nucleotides are the activated precursors of nucleic acids, but they also are major energy carriers, and precursors for the synthesis of nucleotide cofactors. Among these molecules is the guanosine monophosphate (GMP), also known as 5'-guanidylic acid or guanylic acid, a nucleotide that is used as a monomer in RNA. Like other nucleotides, GMP can be synthesized by 2 main pathways : de novo pathway and salvage pathway. De novo synthesis of nucleotide involves several enzymatic reaction and enzymes. Here, we will focus on the final step of the process, which is catalyzed by a glutamine amidotransferase called GMP synthetase (GMPS; E.C. 6.3.5.2). This enzyme belongs to the family of ligases, and catalyzes the conversion of xanthine monophosphate (XMP) to GMP in the presence of glutamine and ATP. [1]
|
References
- ↑ Oliver JC, Linger RS, Chittur SV, Davisson VJ. Substrate activation and conformational dynamics of guanosine 5'-monophosphate synthetase. Biochemistry. 2013 Aug 6;52(31):5225-35. doi: 10.1021/bi3017075. Epub 2013 Jul, 23. PMID:23841499 doi:http://dx.doi.org/10.1021/bi3017075
- ↑ Nakamura J, Lou L. Biochemical characterization of human GMP synthetase. J Biol Chem. 1995 Mar 31;270(13):7347-53. doi: 10.1074/jbc.270.13.7347. PMID:7706277 doi:http://dx.doi.org/10.1074/jbc.270.13.7347