4zz0

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ew2|4ew2]], [[4ew3|4ew3]], [[1rbm|1rbm]], [[1rbq|1rbq]], [[1rby|1rby]], [[1rbz|1rbz]], [[1rc0|1rc0]], [[1rc1|1rc1]], [[1njs|1njs]], [[1men|1men]], [[1mej|1mej]], [[1meo|1meo]], [[1zlx|1zlx]], [[1zly|1zly]], [[4zyt|4zyt]], [[4zyu|4zyu]], [[4zyv|4zyv]], [[4zyw|4zyw]], [[4zyx|4zyx]], [[4zyy|4zyy]], [[4zyz|4zyz]], [[4zz1|4zz1]], [[4zz2|4zz2]], [[4zz3|4zz3]]</td></tr>
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4ew2|4ew2]], [[4ew3|4ew3]], [[1rbm|1rbm]], [[1rbq|1rbq]], [[1rby|1rby]], [[1rbz|1rbz]], [[1rc0|1rc0]], [[1rc1|1rc1]], [[1njs|1njs]], [[1men|1men]], [[1mej|1mej]], [[1meo|1meo]], [[1zlx|1zlx]], [[1zly|1zly]], [[4zyt|4zyt]], [[4zyu|4zyu]], [[4zyv|4zyv]], [[4zyw|4zyw]], [[4zyx|4zyx]], [[4zyy|4zyy]], [[4zyz|4zyz]], [[4zz1|4zz1]], [[4zz2|4zz2]], [[4zz3|4zz3]]</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoribosylglycinamide_formyltransferase Phosphoribosylglycinamide formyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.2.2 2.1.2.2] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Phosphoribosylglycinamide_formyltransferase Phosphoribosylglycinamide formyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.1.2.2 2.1.2.2] </span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4zz0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4zz0 OCA], [http://pdbe.org/4zz0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4zz0 RCSB], [http://www.ebi.ac.uk/pdbsum/4zz0 PDBsum]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4zz0 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4zz0 OCA], [http://pdbe.org/4zz0 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4zz0 RCSB], [http://www.ebi.ac.uk/pdbsum/4zz0 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4zz0 ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Pemetrexed and methotrexate are antifolates used for cancer chemotherapy and inflammatory diseases. These agents have toxic side effects resulting, in part, from nonspecific cellular transport by the reduced folate carrier (RFC), a ubiquitously expressed facilitative transporter. We previously described 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with modifications of the side chain linker and aromatic ring that are poor substrates for RFC but are efficiently transported via folate receptors (FRs) and the proton-coupled folate transporter (PCFT). These targeted antifolates are cytotoxic in vitro toward FR- and PCFT-expressing tumor cells and in vivo with human tumor xenografts in immune-compromised mice, reflecting selective cellular uptake. Antitumor efficacy is due to inhibition of glycinamide ribonucleotide (GAR) formyltransferase (GARFTase) activity in de novo synthesis of purine nucleotides. This study used purified human GARFTase (formyltransferase domain) to assess in vitro inhibition by eight novel thieno- and pyrrolo[2,3-d]pyrimidine antifolates. Seven analogues (AGF23, AGF71, AGF94, AGF117, AGF118, AGF145, and AGF147) inhibited GARFTase with Ki values in the low- to mid-nanomolar concentration range, whereas AGF50 inhibited GARFTase with micromolar potency similar to that of PMX. On the basis of crystal structures of ternary complexes with GARFTase, beta-GAR, and the monoglutamyl antifolates, differences in inhibitory potencies correlated well with antifolate binding and the positions of the terminal carboxylates. Our data provide a mechanistic basis for differences in inhibitory potencies between these novel antifolates and a framework for future structure-based drug design. These analogues could be more efficacious than clinically used antifolates, reflecting their selective cellular uptake by FRs and PCFT and potent GARFTase inhibition.
 +
 +
Structural and Enzymatic Analysis of Tumor-Targeted Antifolates That Inhibit Glycinamide Ribonucleotide Formyltransferase.,Deis SM, Doshi A, Hou Z, Matherly LH, Gangjee A, Dann CE 3rd Biochemistry. 2016 Aug 16;55(32):4574-82. doi: 10.1021/acs.biochem.6b00412. Epub , 2016 Aug 3. PMID:27439469<ref>PMID:27439469</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 4zz0" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 07:03, 9 March 2017

Human GAR transformylase in complex with GAR and (S)-2-(8-(2-Amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin-6-yl)octanamido)pentanedioic acid (AGF147)

4zz0, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools