5tvs

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 10: Line 10:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/KDM4A_HUMAN KDM4A_HUMAN]] Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref> Isoform 2: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref>
[[http://www.uniprot.org/uniprot/KDM4A_HUMAN KDM4A_HUMAN]] Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref> Isoform 2: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain.<ref>PMID:16024779</ref> <ref>PMID:16603238</ref> <ref>PMID:21694756</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
JIB-04, a specific inhibitor of the O2-activating, Fe-dependent histone lysine demethylases, is revealed to disrupt the binding of O2 in KDM4A/JMJD2A through a continuous O2-consumption assay, X-ray crystal structure data, and molecular docking.
 +
 +
The small molecule JIB-04 disrupts O2 binding in the Fe-dependent histone demethylase KDM4A/JMJD2A.,Cascella B, Lee SG, Singh S, Jez JM, Mirica LM Chem Commun (Camb). 2017 Feb 9;53(13):2174-2177. doi: 10.1039/c6cc09882g. PMID:28144654<ref>PMID:28144654</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5tvs" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 08:25, 9 March 2017

JMJD2A in complex with Ni(II)

5tvs, resolution 2.75Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools