User:Natalie Van Ochten/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
=General Structure=
=General Structure=
-
DDAH’s structure has a propeller-like fold which is characteristic of the superfamily of L-arginine/glycine amidinotransferases. This five-stranded propeller is five repeats of a ββαβ motif. These beta sheets and alpha helices form a channel in the center of the protein structure. Lys174 and Glu77 form a salt bridge in the channel that forms the bottom of the active site for the protein. One side of the channel is a water-filled pore, whereas the other side is the active site cleft that is defined by a short loop region and alpha helical structures.
+
DDAH’s structure has a propeller-like fold which is characteristic of the superfamily of L-arginine/glycine amidinotransferases. This five-stranded propeller contains five repeats of a ββαβ motif. This motif consists of two beta-sheets that are anti-parallel, an alpha helix, and another beta-sheet that is parallel to the second beta-sheet in the motif. These motifs in DDAH form a channel in the center of the protein structure. Lys174 and Glu77 form a salt bridge in the channel that forms the bottom of the active site for the protein. One side of the channel is a water-filled pore, whereas the other side is the active site cleft that is defined by a short loop region and alpha helical structures.
==Lid Region==
==Lid Region==

Revision as of 12:20, 28 March 2017

Dimethylarginine Dimethylaminohydrolase

Dimethylarginine Dimethylaminohydrolase with Zn2+ bound at pH 6.3

Drag the structure with the mouse to rotate

References

Tran CTL, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atherosclerosis Supplements. 2003 Dec;4(4):33-40. PMID:14664901 doi:10.1016/S1567-5688(03)00032-1

Frey D, Braun O, Briand C, Vasak M, Grutter MG. Structure of the mammalian NOS regulator dimethylarginine dimethylaminohydrolase: a basis for the design of specific inhibitors. Structure. 2006 May;14(5):901-911. PMID:16698551 doi:10.1016/j.str.2006.03.006

Janssen W, Pullamsetti SS, Cooke J, Weissmann N, Guenther A, Schermuly RT. The role of dimethylarginine dimethylaminohydrolase (DDAH) in pulmonary fibrosis. The Journal of Pathology. 2012 Dec 12;229(2):242-249. Epub 2013 Jan. PMID: 23097221 doi:10.1002/path.4127/full

Palm F, Onozato ML, Luo Z, Wilcox CS. Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. American Journal of Physiology. 2007 Dec 1;293(6):3227-3245. PMID:17933965 doi:10.1152/ajpheart.00998.2007

Rasheed M, Richter C, Chisty LT, Kirkpatrick J, Blackledge M, Webb MR, Driscoll PC. Ligand-dependent dynamics of the active site lid in bacterial Dimethyarginine Dimethylaminohydrolase. Biochemistry. 2014 Feb 18;53:1092-1104. PMCID:PMC3945819 doi:10.1021/bi4015924

Stone EM, Costello AL, Tierney DL, Fast W. Substrate-assisted cysteine deprotonation in the mechanism of Dimethylargininase (DDAH) from Pseudomonas aeruginosa. Biochemistry. 2006 May 2;45(17):5618-5630. PMID:16634643 doi:10.1021/bi052595m

Proteopedia Page Contributors and Editors (what is this?)

Natalie Van Ochten

Personal tools