Sandbox Reserved 1066
From Proteopedia
(Difference between revisions)
| Line 13: | Line 13: | ||
==Mechanism of Transport== | ==Mechanism of Transport== | ||
| - | YiiP's ability to export Zn<sup>2+</sup> from the cytoplasm is best described as an alternating access mechanism with Zn<sup>2+</sup>/H<sup>+</sup> antiport. YiiP has 2 major structural conformations which | + | YiiP's ability to export Zn<sup>2+</sup> from the cytoplasm is best described as an alternating access mechanism with Zn<sup>2+</sup>/H<sup>+</sup> antiport. YiiP has 2 major structural conformations which supported by the crystallized structures 3H90 and 3J1Z (a YiiP homolog derived from Shewanella oneidensis). 3H90 shows YiiP in its outward-facing conformation and 3J1Z shows the YiiP homolog in an inward-facing conformation. The energy for inducing the conformation change from inward to outward is postulated to come from the binding energy of each substrate. The binding of Zn<sup>2+</sup> favors the outward-facing conformation, but the outward facing conformation does not favor the binding of Zn<sup>2+</sup>. The same is observed with the inward-facing conformation and H<sup>+</sup>. Although YiiP exists as a homodimer both monomers can undergo conformation change independent of one other to produce the alternating access mechanism. The main driving force behind exporting Zn<sup>2+</sup> from the cytoplasm is the proton motive force. |
===Zn Induced Conformation Change=== | ===Zn Induced Conformation Change=== | ||
| + | |||
| + | |||
===Allosteric Inhibition=== | ===Allosteric Inhibition=== | ||
Revision as of 14:24, 29 March 2017
Zn Transporter YiiP
| |||||||||||
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
