Sandbox Reserved 1066

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
==Zn Transporter YiiP==
+
==Zn<sup>2+</sup> Transporter YiiP==
<StructureSection load='3h90' size='340' side='right' caption='Zn Transporter' scene=''>
<StructureSection load='3h90' size='340' side='right' caption='Zn Transporter' scene=''>
This is a default text for your page '''Kyle Colston/Sandbox 1'''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
This is a default text for your page '''Kyle Colston/Sandbox 1'''. Click above on '''edit this page''' to modify. Be careful with the &lt; and &gt; signs.
Line 13: Line 13:
==Mechanism of Transport==
==Mechanism of Transport==
-
YiiP's ability to export Zn<sup>2+</sup> from the cytoplasm is best described as an alternating access mechanism with Zn<sup>2+</sup>/H<sup>+</sup> antiport. YiiP has 2 major structural conformations as shown by the crystallized structures 3H90 and 3J1Z (a YiiP homolog derived from Shewanella oneidensis). 3H90 shows YiiP in its outward-facing conformation and 3J1Z shows the YiiP homolog in an inward-facing conformation.
+
YiiP's ability to export Zn<sup>2+</sup> from the cytoplasm is best described as an alternating access mechanism with Zn<sup>2+</sup>/H<sup>+</sup> antiport. YiiP has 2 major structural conformations as shown by the crystallized structures 3H90 and 3J1Z (a YiiP homolog derived from ''Shewanella oneidensis''). 3H90 shows YiiP in its outward-facing conformation and 3J1Z shows the YiiP homolog in an inward-facing conformation.
When YiiP is saturated with Zn<sup>2+</sup> it seems to favor the perplasmic/outward-facing conformation whereas when active sites are either empty or bound to H<sup>+</sup> the inward facing conformation is favored. This drives the export of Zn<sup>2+</sup> from the cytoplasm and enhances the coupling of the proton-motive force. Although YiiP exists as a homodimer both monomers can undergo conformation change independent of one other to produce the alternating access mechanism.
When YiiP is saturated with Zn<sup>2+</sup> it seems to favor the perplasmic/outward-facing conformation whereas when active sites are either empty or bound to H<sup>+</sup> the inward facing conformation is favored. This drives the export of Zn<sup>2+</sup> from the cytoplasm and enhances the coupling of the proton-motive force. Although YiiP exists as a homodimer both monomers can undergo conformation change independent of one other to produce the alternating access mechanism.
-
===Zn Induced Conformation Change===
+
===Zn<sup>2+</sup> Induced Conformation Change===
Conformation changes occur in the TMD and CTD, both of which are heavily influenced by the presence of Zn<sup>2+</sup>. Both of these conformation changes are focused around the charge interlocking mechanism that holds the dimer together. This is because a flexible loop that likes the CTD and the TMD which acts as a hinge for
Conformation changes occur in the TMD and CTD, both of which are heavily influenced by the presence of Zn<sup>2+</sup>. Both of these conformation changes are focused around the charge interlocking mechanism that holds the dimer together. This is because a flexible loop that likes the CTD and the TMD which acts as a hinge for

Revision as of 16:20, 29 March 2017

Zn2+ Transporter YiiP

Zn Transporter

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools