Sandbox Reserved 1069

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 30: Line 30:
'''Binding Site C'''
'''Binding Site C'''
-
<scene name='69/694236/Site_c/1'>Binding Site C</scene> has vastly opposite properties from what is seen in binding site A. It is located on the TM2-TM3 loop on the cytoplasmic membrane and between the two C-terminus domain interfaces. Here, there is a binuclear coordination of Zn<sup>2+</sup> between the <scene name='69/694236/Asp285/3'>Asp285</scene> residue that bridges the Zn<sup>2+</sup> ions together and the four coordinating residues (<scene name='69/694236/His232/1'>His232</scene>, His248, His283 and His261). The Asp285 residue is conserved, meaning it does not have outer shell constraints. However, the four histidine residues all have outer shell constraints. These constraints consist of hydrogen bonds to the residues surrounding the binding site. These hydrogen bonds can form bidentate bonds, which means that the hydrogen bond attaches to a metal in two places. These bonds in turn create an extensive network of interactions at the CTD interface, and it is these interactions that allow for stability and strengthening of the CTD-CTD association.
+
<scene name='69/694236/Site_c/1'>Binding Site C</scene> has vastly opposite properties from what is seen in binding site A. It is located on the TM2-TM3 loop on the cytoplasmic membrane and between the two C-terminus domain interfaces. Here, there is a binuclear coordination of Zn<sup>2+</sup> between the <scene name='69/694236/Asp285/3'>Asp285</scene> residue that bridges the Zn<sup>2+</sup> ions together and the four coordinating residues (<scene name='69/694236/His232/2'>His232</scene>, <scene name='69/694236/His248/1'>His248</scene>, His283 and His261). The Asp285 residue is conserved, meaning it does not have outer shell constraints. However, the four histidine residues all have outer shell constraints. These constraints consist of hydrogen bonds to the residues surrounding the binding site. These hydrogen bonds can form bidentate bonds, which means that the hydrogen bond attaches to a metal in two places. These bonds in turn create an extensive network of interactions at the CTD interface, and it is these interactions that allow for stability and strengthening of the CTD-CTD association.
==Mechanism of Transport==
==Mechanism of Transport==

Revision as of 17:17, 31 March 2017

Introduction

Zinc transporter is an integral membrane protein found in the membrane of Esherichia coli and a member of the cation diffusion facilitator family. Members of this family occur all throughout the biological real, their primary function being the export of divalent transition metal ions from the cytoplasm to the extracellular space [1]. They work to regulate the amount of divalent metals inside of the cell, which is biologically relevant because while these metals are necessary for different biological functions, they can prove fatal to the cell in excess amounts. Zinc is essential for the growth and development of cells and zinc levels can affect everything from gene expression to immune response. While YiiP is an integral membrane protein in the cells of Escherichia coli, understanding the mechanism of regulation behind it can help researcher's better understand the cation diffusion facilitator equivalents in eukaryotic cells.

Zinc Transporter YiiP

Drag the structure with the mouse to rotate
Personal tools