Carboxypeptidase A

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 19: Line 19:
=====S1 Subsite=====
=====S1 Subsite=====
-
In the same way that the S1' subsite is involved in anchoring the polypeptide substrate in place, the <scene name='69/694222/3cpas1subsitespacefill/2'>S1 subsite</scene> (spacefill view, subsite in cyan) contains several residues that help hold the substrate in the active site, but the S1 subsite also contains the residues that are involved in the catalytic chemical mechanism. In general, the residues of the <scene name='69/694222/3cpas1subsitemeshfill/1'>S1 subsite</scene> (pseudo-mesh view, subsite in cyan) have polar or charged side chains that either allow for hydrogen bonding to stabilize negatively charged intermediates of the hydrolysis reaction or position particular atoms appropriately to allow for chemistry to occur. Three residues (<scene name='69/694222/3cpas1subsiteresidues1/1'>Asn144, Arg145, and Tyr248</scene>) aid in the recognition of the C-terminal residue of a polypeptide substrate.<ref name="CPA1" /> The Asn144 and Tyr248 residues each engage in [http://en.wikipedia.org/wiki/Hydrogen_bond hydrogen bonding] and [http://en.wikipedia.org/wiki/Intermolecular_force ion-dipole interactions] with the carboxyl group at the C-terminus, while Arg145 provides additional stability by participating in [http://www.masterorganicchemistry.com/2010/10/01/how-intermolecular-forces-affect-boiling-points/ ion-ion interactions] with the carboxyl group (see Figure 2 in the section titled "Mechanism of Action"). <scene name='69/694222/3cpas1subsiteresidues2/1'>Arg71</scene> helps stabilize the substrate in the active site by engaging in ion-dipole interactions with the carbonyl oxygen of the penultimate substrate residue (Figure 2). Three residues (<scene name='69/694222/3cpas1subsitezn/1'>His196, Glu72, and His69</scene>) are liganded to a catalytic Zn<sup>2+</sup> ion that is complexed to a water molecule positioned one bond distance away from the C-terminal peptide bond carbonyl carbon (Figure 2).<ref name="CPA2" /> <scene name='69/694222/3cpas1subsiteglu270/1'>Glu270</scene> deprotonates this water molecule and acts as a base catalyst in the hydrolysis mechanism (Figure 2). <scene name='69/694222/3cpas1subsitearg127/1'>Arg127</scene>, along with the positively charged Zn<sup>2+</sup> ion, help stabilize the negatively charged intermediate generated in the [http://www.masterorganicchemistry.com/tips/addition-elimination/ addition-elimination] step of the hydrolysis reaction (Figure 2).<ref name="CPA2" />
+
In the same way that the S1' subsite is involved in anchoring the polypeptide substrate in place, the <scene name='69/694222/3cpas1subsitespacefill/2'>S1 subsite</scene> (spacefill view, subsite in cyan) contains several residues that help hold the substrate in the active site, but the S1 subsite also contains the residues that are involved in the catalytic chemical mechanism. In general, the residues of the <scene name='69/694222/3cpas1subsitemeshfill/1'>S1 subsite</scene> (pseudo-mesh view, subsite in cyan) have polar or charged side chains that either allow for hydrogen bonding to stabilize negatively charged intermediates of the hydrolysis reaction or position particular atoms appropriately to allow for chemistry to occur. Three residues (<scene name='69/694222/3cpas1subsiteresidues1/1'>Asn144, Arg145, and Tyr248</scene>) aid in the recognition of the C-terminal residue of a polypeptide substrate.<ref name="CPA1" /> The Asn144 and Tyr248 residues each engage in [http://en.wikipedia.org/wiki/Hydrogen_bond hydrogen bonding] and [http://en.wikipedia.org/wiki/Intermolecular_force ion-dipole interactions] with the carboxyl group at the C-terminus, while Arg145 provides additional stability by participating in [http://www.masterorganicchemistry.com/2010/10/01/how-intermolecular-forces-affect-boiling-points/ ion-ion interactions] with the carboxyl group (see Figure 3 in the section titled "Mechanism of Action"). <scene name='69/694222/3cpas1subsiteresidues2/1'>Arg71</scene> helps stabilize the substrate in the active site by engaging in ion-dipole interactions with the carbonyl oxygen of the penultimate substrate residue (Figure 3). Three residues (<scene name='69/694222/3cpas1subsitezn/1'>His196, Glu72, and His69</scene>) are liganded to a catalytic Zn<sup>2+</sup> ion that is complexed to a water molecule positioned one bond distance away from the C-terminal peptide bond carbonyl carbon (Figure 3).<ref name="CPA2" /> <scene name='69/694222/3cpas1subsiteglu270/1'>Glu270</scene> deprotonates this water molecule and acts as a base catalyst in the hydrolysis mechanism (Figure 3). <scene name='69/694222/3cpas1subsitearg127/1'>Arg127</scene>, along with the positively charged Zn<sup>2+</sup> ion, help stabilize the negatively charged intermediate generated in the [http://www.masterorganicchemistry.com/tips/addition-elimination/ addition-elimination] step of the hydrolysis reaction (Figure 3).<ref name="CPA2" />
=====Putting It All Together=====
=====Putting It All Together=====
Line 30: Line 30:
Two chemical mechanisms have been proposed for the hydrolysis reaction catalyzed by CPA. One mechanism, referred to as the nucleophilic pathway, involves a covalent acyl enzyme intermediate (an anhydride intermediate) containing Glu270, the active site base.<ref name="CPA2" /> Although there is some chemical and kinetic support for the nucleophilic pathway, the evidence is mixed and ambiguous. In one set of experiments conducted by Suh and his colleagues in 1985, accumulation of an intermediate (assumed to be the acyl enzyme) was obtained; however, the intermediate was isolated without confirmation by trapping experiments. Therefore, the conclusions of the study only provide marginal evidence for the mixed anhydride intermediate.<ref>Suh J, Cho W, Chung S. 1985. Carboxypeptidase A-catalyzed hydrolysis of α-(acylamino)cinnamoyl derivatives of L-β-phenyllactate and L-phenylalaninate: evidence for acyl-enzyme intermediates. ''J. Am. Chem. Soc.'' 107:4530-4535. [http://pubs.acs.org/doi/abs/10.1021%2Fja00301a025 DOI: 10.1021/ja00301a025]</ref>
Two chemical mechanisms have been proposed for the hydrolysis reaction catalyzed by CPA. One mechanism, referred to as the nucleophilic pathway, involves a covalent acyl enzyme intermediate (an anhydride intermediate) containing Glu270, the active site base.<ref name="CPA2" /> Although there is some chemical and kinetic support for the nucleophilic pathway, the evidence is mixed and ambiguous. In one set of experiments conducted by Suh and his colleagues in 1985, accumulation of an intermediate (assumed to be the acyl enzyme) was obtained; however, the intermediate was isolated without confirmation by trapping experiments. Therefore, the conclusions of the study only provide marginal evidence for the mixed anhydride intermediate.<ref>Suh J, Cho W, Chung S. 1985. Carboxypeptidase A-catalyzed hydrolysis of α-(acylamino)cinnamoyl derivatives of L-β-phenyllactate and L-phenylalaninate: evidence for acyl-enzyme intermediates. ''J. Am. Chem. Soc.'' 107:4530-4535. [http://pubs.acs.org/doi/abs/10.1021%2Fja00301a025 DOI: 10.1021/ja00301a025]</ref>
-
The second mechanism, which has been coined as the promoted water pathway, is better supported by chemical and structural data. The mechanism of the reaction (Figure 2) is as follows:
+
The second mechanism, which has been coined as the promoted water pathway, is better supported by chemical and structural data. The mechanism of the reaction (Figure 3) is as follows:
# Three S1 subsite residues (Asn144, Arg145, and Tyr248) and the hydrophobic S1' subsite recognize the C-terminus of the polypeptide substrate.
# Three S1 subsite residues (Asn144, Arg145, and Tyr248) and the hydrophobic S1' subsite recognize the C-terminus of the polypeptide substrate.
# After aiding in the recognition of the substrate, Tyr248 "caps" the binding pocket.
# After aiding in the recognition of the substrate, Tyr248 "caps" the binding pocket.
Line 38: Line 38:
# The Glu270 base catalyst is regenerated through a final [http://www.masterorganicchemistry.com/tips/proton-transfer/ proton transfer] with the nitrogen atom of the former C-terminal peptide bond.
# The Glu270 base catalyst is regenerated through a final [http://www.masterorganicchemistry.com/tips/proton-transfer/ proton transfer] with the nitrogen atom of the former C-terminal peptide bond.
# Product release is facilitated, in part, by unfavorable electrostatic interactions between the regenerated Glu270 base catalyst and the deprotonated carboxylic acid at the new C-terminus.
# Product release is facilitated, in part, by unfavorable electrostatic interactions between the regenerated Glu270 base catalyst and the deprotonated carboxylic acid at the new C-terminus.
-
[[Image:Proteopedia Reaction Mechanism Graphic.jpg|850 px|thumb|Figure 2: Hydrolysis of C-terminal polypeptide substrate residue by CPA using the promoted water pathway. Residues of the S1 subsite stabilize the negatively charged intermediate once the water molecule complexed with the Zn<sup>2+</sup> ion is deprotonated by the base catalyst, Glu270, and attacks the carbonyl. This figure is derived from Figure 10 in "Carboxypeptidase A" by Christianson and Lipscomb (''Acc. Chem. Res.'', 1989).<ref name="CPA2" /> ]]
+
[[Image:Proteopedia Reaction Mechanism Graphic.jpg|850 px|thumb|Figure 3: Hydrolysis of C-terminal polypeptide substrate residue by CPA using the promoted water pathway. Residues of the S1 subsite stabilize the negatively charged intermediate once the water molecule complexed with the Zn<sup>2+</sup> ion is deprotonated by the base catalyst, Glu270, and attacks the carbonyl. This figure is derived from Figure 10 in "Carboxypeptidase A" by Christianson and Lipscomb (''Acc. Chem. Res.'', 1989).<ref name="CPA2" /> ]]
{{Clear}}
{{Clear}}
==Catalytic and Inhibitory Zinc Binding==
==Catalytic and Inhibitory Zinc Binding==
-
CPA from ''B. taurus'' has been co-crystallized with two Zn<sup>2+</sup> ions (Figure 1). This structure has been deposited in the PDB database under the label [http://www.rcsb.org/pdb/explore/explore.do?structureId=1cpx 1CPX], which is a β-form of CPA. The binding of only one Zn<sup>2+</sup> ion is [http://en.wikipedia.org/wiki/Catalysis catalytic], while the binding of a second is [http://en.wikipedia.org/wiki/Reaction_inhibitor inhibitory]. These Zn<sup>2+</sup> ions are connected to each other via a hydroxy-bridge (Figure 3) with a distance of 3.48 [http://en.wikipedia.org/wiki/%C3%85ngstr%C3%B6m Å].<ref name="CPA1" /> [[Image:1CPXhydroxybridge.png|150 px|right|thumb|Figure 3: Hydroxy-bridge between catalytic and inhibitory zinc ions. The catalytic Zn<sup>2+</sup> ion (shown in orange on the right) is bridged to the inhibitory Zn<sup>2+</sup> ion (shown in orange on the left) by a OH<sup>-</sup> (shown in red).]] In <scene name='69/694222/3cpas1subsiteglu270/1'>the CPA structure containing only the catalytic Zn<sup>2+</sup> ion</scene> ([http://www.rcsb.org/pdb/explore/explore.do?structureId=3cpa 3CPA]), a water molecule complexed to the zinc is able to be deprotonated by Glu270 to allow for normal initiation of hydrolysis. However, when <scene name='69/694222/Glu270wiz/7'>the inhibitory Zn<sup>2+</sup> ion</scene> is also present ([http://www.rcsb.org/pdb/explore/explore.do?structureId=1cpx 1CPX]), it occupies the physical space that would normally be occupied by the water molecule. Thus, the inhibitory Zn<sup>2+</sup> ion interacts with the carboxylate group of Glu270. The Glu270 now simply stabilizes the second Zn<sup>2+</sup> and is unable to perform its usual base catalyst role while the catalytic Zn<sup>2+</sup> ion (shown in green) is still being stabilized in place by His69, Glu72, and His196 (shown in orange).
+
CPA from ''B. taurus'' has been co-crystallized with two Zn<sup>2+</sup> ions (Figure 1). This structure has been deposited in the PDB database under the label [http://www.rcsb.org/pdb/explore/explore.do?structureId=1cpx 1CPX], which is a β-form of CPA. The binding of only one Zn<sup>2+</sup> ion is [http://en.wikipedia.org/wiki/Catalysis catalytic], while the binding of a second is [http://en.wikipedia.org/wiki/Reaction_inhibitor inhibitory]. These Zn<sup>2+</sup> ions are connected to each other via a hydroxy-bridge (Figure 3) with a distance of 3.48 [http://en.wikipedia.org/wiki/%C3%85ngstr%C3%B6m Å].<ref name="CPA1" /> [[Image:1CPXhydroxybridge.png|150 px|right|thumb|Figure 4: Hydroxy-bridge between catalytic and inhibitory zinc ions. The catalytic Zn<sup>2+</sup> ion (shown in orange on the right) is bridged to the inhibitory Zn<sup>2+</sup> ion (shown in orange on the left) by a OH<sup>-</sup> (shown in red).]] In <scene name='69/694222/3cpas1subsiteglu270/1'>the CPA structure containing only the catalytic Zn<sup>2+</sup> ion</scene> ([http://www.rcsb.org/pdb/explore/explore.do?structureId=3cpa 3CPA]), a water molecule complexed to the zinc is able to be deprotonated by Glu270 to allow for normal initiation of hydrolysis. However, when <scene name='69/694222/Glu270wiz/7'>the inhibitory Zn<sup>2+</sup> ion</scene> is also present ([http://www.rcsb.org/pdb/explore/explore.do?structureId=1cpx 1CPX]), it occupies the physical space that would normally be occupied by the water molecule. Thus, the inhibitory Zn<sup>2+</sup> ion interacts with the carboxylate group of Glu270. The Glu270 now simply stabilizes the second Zn<sup>2+</sup> and is unable to perform its usual base catalyst role while the catalytic Zn<sup>2+</sup> ion (shown in green) is still being stabilized in place by His69, Glu72, and His196 (shown in orange).
==Other Inhibitors==
==Other Inhibitors==

Revision as of 22:29, 2 April 2017

This Sandbox is Reserved from 02/09/2015, through 05/31/2016 for use in the course "CH462: Biochemistry 2" taught by Geoffrey C. Hoops at the Butler University. This reservation includes Sandbox Reserved 1051 through Sandbox Reserved 1080.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Carboxypeptidase A in Bos taurus

Carboxypeptidase A (CPA) biological assembly (PDB: 3CPA)

Drag the structure with the mouse to rotate

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Bukrinsky JT, Bjerrum MJ, Kadziola A. 1998. Native carboxypeptidase A in a new crystal environment reveals a different conformation of the important tyrosine 248. Biochemistry. 37(47):16555-16564. DOI: 10.1021/bi981678i
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Christianson DW, Lipscomb WN. 1989. Carboxypeptidase A. Acc. Chem. Res. 22:62-69.
  3. Suh J, Cho W, Chung S. 1985. Carboxypeptidase A-catalyzed hydrolysis of α-(acylamino)cinnamoyl derivatives of L-β-phenyllactate and L-phenylalaninate: evidence for acyl-enzyme intermediates. J. Am. Chem. Soc. 107:4530-4535. DOI: 10.1021/ja00301a025
  4. Geoghegan, KF, Galdes, A, Martinelli, RA, Holmquist, B, Auld, DS, Vallee, BL. 1983. Cryospectroscopy of intermediates in the mechanism of carboxypeptidase A. Biochem. 22(9):2255-2262. DOI: 10.1021/bi00278a031
  5. Kaplan, AP, Bartlett, PA. 1991. Synthesis and evaluation of an inhibitor of carboxypeptidase A with a Ki value in the femtomolar range. Biochem. 30(33):8165-8170. PMID: 1868091
  6. Worthington, K., Worthington, V. 1993. Worthington Enzyme Manual: Enzymes and Related Biochemicals. Freehold (NJ): Worthington Biochemical Corporation; [2011; accessed March 28, 2017]. Carboxypeptidase A. http://www.worthington-biochem.com/COA/
  7. Pitout, MJ, Nel, W. 1969. The inhibitory effect of ochratoxin a on bovine carboxypeptidase a in vitro. Biochem. Pharma. 18(8):1837-1843. DOI: 0.1016/0006-2952(69)90279-2
  8. Normant, E, Martres, MP, Schwartz, JC, Gros, C. 1995. Purification, cDNA cloning, functional expression, and characterization of a 26-kDa endogenous mammalian carboxypeptidase inhibitor. Proc. Natl. Acad. Sci. 92(26):12225-12229. PMCID: PMC40329

Student Contributors

  • Thomas Baldwin
  • Michael Melbardis
  • Clay Schnell
Personal tools