User:Luke Edward Severinac/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
In order to function as an endoprotease, Caspase-6 binds a <scene name='75/752344/Protein_ligand_real/1'>ligand</scene>, which can include neuronal proteins and tubulins [https://en.wikipedia.org/wiki/Tubulin], in its active site.[[Image:Binding grove active caspase 6.png|100 px|right|thumb|Substrate binding grove in Caspase-6. Blue - catalytic residues
In order to function as an endoprotease, Caspase-6 binds a <scene name='75/752344/Protein_ligand_real/1'>ligand</scene>, which can include neuronal proteins and tubulins [https://en.wikipedia.org/wiki/Tubulin], in its active site.[[Image:Binding grove active caspase 6.png|100 px|right|thumb|Substrate binding grove in Caspase-6. Blue - catalytic residues
yellow - ligand
yellow - ligand
-
red - generic surface]] This binding groove contains three critical amino acid residues necessary to perform cleavage of the peptide bonds. Together, <scene name='75/752344/His121_real/1'>His-121</scene>, <scene name='75/752344/Glu123_real/1'>Glu-123</scene>, and <scene name='75/752344/Cys163_real/1'>Cys-163</scene> form a <scene name='75/752344/Catalytic_triad_real/1'>catalytic triad</scene>[[Image:Cystine Aspartase.png|100 px|right|thumb|active site mechanism]]. In the theorized mechanism, His-121 acts as an acid catalyst, Glu-123 acts as a base catalyst to deprotonate Cys-163, which then acts as covalent catalyst.
+
red - generic surface]] This binding groove contains three critical amino acid residues necessary to perform cleavage of the peptide bonds. Together, <scene name='75/752344/His121_real/1'>His-121</scene>, <scene name='75/752344/Glu123_real/1'>Glu-123</scene>, and <scene name='75/752344/Cys163_real/1'>Cys-163</scene> form a <scene name='75/752344/Catalytic_triad_real/1'>catalytic triad</scene>.[[Image:Cystine Aspartase.png|500 px|right|active site mechanism]] In the theorized mechanism, His-121 acts as an acid catalyst, Glu-123 acts as a base catalyst to deprotonate Cys-163, which then acts as covalent catalyst.
==Zinc Inhibition==
==Zinc Inhibition==

Revision as of 12:03, 18 April 2017

Caspase-6 in Homo sapiens

Caspase-6

Drag the structure with the mouse to rotate

References

  1. Velazquez-Delgado EM, Hardy JA. Phosphorylation regulates assembly of the caspase-6 substrate-binding groove. Structure. 2012 Apr 4;20(4):742-51. Epub 2012 Apr 3. PMID:22483120 doi:10.1016/j.str.2012.02.003
  2. 2.0 2.1 Wang XJ, Cao Q, Zhang Y, Su XD. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2015;55:553-72. doi:, 10.1146/annurev-pharmtox-010814-124414. Epub 2014 Oct 17. PMID:25340928 doi:http://dx.doi.org/10.1146/annurev-pharmtox-010814-124414
  3. Wang XJ, Cao Q, Liu X, Wang KT, Mi W, Zhang Y, Li LF, Leblanc AC, Su XD. Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation. EMBO Rep. 2010 Oct 1. PMID:20890311 doi:10.1038/embor.2010.141

Proteopedia Page Contributors and Editors (what is this?)

Luke Edward Severinac

Personal tools