User:Luke Edward Severinac/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='4FXO' size='340' side='right' caption='Caspase-6' scene=''>
<StructureSection load='4FXO' size='340' side='right' caption='Caspase-6' scene=''>
Caspase-6 is an [https://en.wikipedia.org/wiki/Endopeptidase endopeptidase] involved in apoptosis. In terms of its catalytic function, it is a part of the [https://en.wikipedia.org/wiki/Caspase cysteine-aspartate family]. Before Caspase-6 becomes functional, the enzyme exists as a procaspase, also known as a [https://en.wikipedia.org/wiki/Zymogen zymogen]. In its <scene name='75/752344/Caspase-6_zymogen/1'>biological unit</scene>, the zymogen exists as a homodimer, whose <scene name='75/752344/Caspase-6_zymogen_realller/1'>monomeric units</scene> are then cleaved at <scene name='75/752344/Caspase-6_cleavage_sites_real/1'>specific sites</scene> to assume its active conformation. Zymogen activation through cleavage is largely conserved across the caspase family. However, Caspase-6 is unique in that it becomes active through self-cleavage in addition to cleavage by a separate enzyme. Each monomeric unit of zymogen contains a <scene name='75/752344/Caspase-6_small_subunit_mnmr/1'>small subunit</scene> consisting of two helices and <scene name='75/752344/Caspase-6_large_real_yeahboi/1'>large subunit</scene> consisting of three helices, a <scene name='75/752344/Caspase-6_prodomain/1'>prodomain</scene>, with a beta sheet core. After cleavage at all sites, the processed post-zymogen monomers remain closely associated together through intermolecular forces as a dimer.
Caspase-6 is an [https://en.wikipedia.org/wiki/Endopeptidase endopeptidase] involved in apoptosis. In terms of its catalytic function, it is a part of the [https://en.wikipedia.org/wiki/Caspase cysteine-aspartate family]. Before Caspase-6 becomes functional, the enzyme exists as a procaspase, also known as a [https://en.wikipedia.org/wiki/Zymogen zymogen]. In its <scene name='75/752344/Caspase-6_zymogen/1'>biological unit</scene>, the zymogen exists as a homodimer, whose <scene name='75/752344/Caspase-6_zymogen_realller/1'>monomeric units</scene> are then cleaved at <scene name='75/752344/Caspase-6_cleavage_sites_real/1'>specific sites</scene> to assume its active conformation. Zymogen activation through cleavage is largely conserved across the caspase family. However, Caspase-6 is unique in that it becomes active through self-cleavage in addition to cleavage by a separate enzyme. Each monomeric unit of zymogen contains a <scene name='75/752344/Caspase-6_small_subunit_mnmr/1'>small subunit</scene> consisting of two helices and <scene name='75/752344/Caspase-6_large_real_yeahboi/1'>large subunit</scene> consisting of three helices, a <scene name='75/752344/Caspase-6_prodomain/1'>prodomain</scene>, with a beta sheet core. After cleavage at all sites, the processed post-zymogen monomers remain closely associated together through intermolecular forces as a dimer.
-
 
+
==Zymogen==
In addition to a self-cleavage mechanism, Caspase-6 zymogen can be activated getting cleaved by Caspase-3, as well as other enzymes. The mechanism of activation by clevage is highly conserved across the caspase family; Self-processing is uniquely recognized as the primary mechanism for Caspase-6 activation, where clevage must occur at two sites for complete activation, specifically the pro-domain and the intersubunit linker. These cleavages are both sequence specific and ordered. First, pro-domain must be cleaved. (Some residues of the pro-domain are not visible in the crystallized structure) Then cleavage of the intersubunit linker occurs, cleaving both DVVD179 and TEVD193. To some extent the pro-domain inhibits Caspase-6's ability to cleave the intersubunit loop and self-activate; It has been proposed that this sequence of cleavage is due to the pro-domain being more readily available to enter the active site. The result of the TETD23 cleavage site priority is that the prodomain acts as a “suicide protector”, which protects the TEVD193 cleavage site from self-cleavage[3]. This protection is necessary when there are low levels of inactive proteins, which must be preserved, in the tissue. The intramolecular cleavage of TETD23 and DVVD179 or TEVD193 are essential for the initiation caspase-6 activation without other caspases present. After both cleavages occur, the processed Caspase-6 can be found in solution as a dimer of dimers.
In addition to a self-cleavage mechanism, Caspase-6 zymogen can be activated getting cleaved by Caspase-3, as well as other enzymes. The mechanism of activation by clevage is highly conserved across the caspase family; Self-processing is uniquely recognized as the primary mechanism for Caspase-6 activation, where clevage must occur at two sites for complete activation, specifically the pro-domain and the intersubunit linker. These cleavages are both sequence specific and ordered. First, pro-domain must be cleaved. (Some residues of the pro-domain are not visible in the crystallized structure) Then cleavage of the intersubunit linker occurs, cleaving both DVVD179 and TEVD193. To some extent the pro-domain inhibits Caspase-6's ability to cleave the intersubunit loop and self-activate; It has been proposed that this sequence of cleavage is due to the pro-domain being more readily available to enter the active site. The result of the TETD23 cleavage site priority is that the prodomain acts as a “suicide protector”, which protects the TEVD193 cleavage site from self-cleavage[3]. This protection is necessary when there are low levels of inactive proteins, which must be preserved, in the tissue. The intramolecular cleavage of TETD23 and DVVD179 or TEVD193 are essential for the initiation caspase-6 activation without other caspases present. After both cleavages occur, the processed Caspase-6 can be found in solution as a dimer of dimers.

Revision as of 03:20, 19 April 2017

Caspase-6 in Homo sapiens

Caspase-6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Luke Edward Severinac

Personal tools