Sandbox Reserved 1072

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 14: Line 14:
==Catalytic GGEEF Domains==
==Catalytic GGEEF Domains==
-
The <scene name='69/694239/Ggeef_domain_zmout_dgcz/2'>GGEEF domains</scene> of DgcZ are part of the GGDEF family of proteins that are characterized by a conserved sequence, GG[DE][DE]F<sup>[6]</sup>. The GGEEF domains contain a central five-stranded β-sheet surrounded by five α-helices (Figure 4). The GGEEF domains each possess a catalytic half-site (Residues Gly-206, Gly-207, Glu-208, Glu-209, and Phe-210) that, when combined together in a productive conformation, form the entire <scene name='69/694239/Ggeef_domain_dgcz/6'>active site</scene>. Each half-site binds the guanine base of a single GTP molecule via hydrogen bonding to residues <scene name='69/694239/Gtp_guanine_bonds_asn_asp_dgcz/7'>Asn 173 and Asp 182</scene>. This scene depicts an inactive form of the protein because it was crystallized with zinc bound. The ribose of each guanosine triphosphate, and subsequent product c-di-GMP riboses, are held only loosely by the enzyme, while the phosphate groups are not bound to the active site at all<sup>[3]</sup>.
+
The <scene name='69/694239/Ggeef_domain_zmout_dgcz/3'>GGEEF domains</scene> of DgcZ are part of the GGDEF family of proteins that are characterized by a conserved sequence, GG[DE][DE]F<sup>[6]</sup>. The GGEEF domains contain a central five-stranded β-sheet surrounded by five α-helices (Figure 4). The GGEEF domains each possess a catalytic half-site (Residues Gly-206, Gly-207, Glu-208, Glu-209, and Phe-210) that, when combined together in a productive conformation, form the entire <scene name='69/694239/Ggeef_domain_dgcz/6'>active site</scene>. Each half-site binds the guanine base of a single GTP molecule via hydrogen bonding to residues <scene name='69/694239/Gtp_guanine_bonds_asn_asp_dgcz/7'>Asn 173 and Asp 182</scene>. This scene depicts an inactive form of the protein because it was crystallized with zinc bound. The ribose of each guanosine triphosphate, and subsequent product c-di-GMP riboses, are held only loosely by the enzyme, while the phosphate groups are not bound to the active site at all<sup>[3]</sup>.
The alpha phosphate is available for attack by the 3 prime hydroxyl group on another GTP. A <scene name='69/694239/Gtp_magnesium_cofactors_dgcz/3'>Magnesium ion</scene> (Mg<sup>2+</sup>) stabilizes the negative charges on the phosphate groups. When in the inactive conformation, the C3 of the ribose on one GTP is <scene name='69/694239/Gtp_distances/2'>too far away</scene> (9-10 Angstroms) from the alpha phosphate on the other GTP to undergo cyclization. When in the productive conformation, each GTP is held in close proximity with the α-phosphate groups overlapping C3 of the ribose ring. This conformation allows the α-phospate of one GTP to react with the alcohol group attached to C3 of the ribose on the second GTP, resulting in a cyclization of the two molecules into c-di-GMP<sup>[3]</sup>.
The alpha phosphate is available for attack by the 3 prime hydroxyl group on another GTP. A <scene name='69/694239/Gtp_magnesium_cofactors_dgcz/3'>Magnesium ion</scene> (Mg<sup>2+</sup>) stabilizes the negative charges on the phosphate groups. When in the inactive conformation, the C3 of the ribose on one GTP is <scene name='69/694239/Gtp_distances/2'>too far away</scene> (9-10 Angstroms) from the alpha phosphate on the other GTP to undergo cyclization. When in the productive conformation, each GTP is held in close proximity with the α-phosphate groups overlapping C3 of the ribose ring. This conformation allows the α-phospate of one GTP to react with the alcohol group attached to C3 of the ribose on the second GTP, resulting in a cyclization of the two molecules into c-di-GMP<sup>[3]</sup>.

Revision as of 20:45, 21 April 2017

This Sandbox is Reserved from 02/09/2015, through 05/31/2016 for use in the course "CH462: Biochemistry 2" taught by Geoffrey C. Hoops at the Butler University. This reservation includes Sandbox Reserved 1051 through Sandbox Reserved 1080.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Diguanylate Cyclase DgcZ from Escherichia coli

Diguanylate Cyclase DgcZ

Drag the structure with the mouse to rotate
Personal tools