3ni9
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='3ni9' size='340' side='right' caption='[[3ni9]], [[Resolution|resolution]] 2.00Å' scene=''> | <StructureSection load='3ni9' size='340' side='right' caption='[[3ni9]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[3ni9]] is a 2 chain structure | + | <table><tr><td colspan='2'>[[3ni9]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3NI9 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3NI9 FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EPE:4-(2-HYDROXYETHYL)-1-PIPERAZINE+ETHANESULFONIC+ACID'>EPE</scene></td></tr> | ||
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3nia|3nia]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3nia|3nia]]</td></tr> | ||
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bla GES-2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ni9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ni9 OCA], [http://pdbe.org/3ni9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ni9 RCSB], [http://www.ebi.ac.uk/pdbsum/3ni9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ni9 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3ni9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ni9 OCA], [http://pdbe.org/3ni9 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ni9 RCSB], [http://www.ebi.ac.uk/pdbsum/3ni9 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ni9 ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Carbapenems are the last resort antibiotics for treatment of life-threatening infections. The GES beta-lactamases are important contributors to carbapenem resistance in clinical bacterial pathogens. A single amino acid difference at position 170 of the GES-1, GES-2, and GES-5 enzymes is responsible for the expansion of their substrate profile to include carbapenem antibiotics. This highlights the increasing need to understand the mechanisms by which the GES beta-lactamases function to aid in development of novel therapeutics. We demonstrate that the catalytic efficiency of the enzymes with carbapenems meropenem, ertapenem, and doripenem progressively increases (100-fold) from GES-1 to -5, mainly due to an increase in the rate of acylation. The data reveal that while acylation is rate limiting for GES-1 and GES-2 for all three carbapenems, acylation and deacylation are indistinguishable for GES-5. The ertapenem-GES-2 crystal structure shows that only the core structure of the antibiotic interacts with the active site of the GES-2 beta-lactamase. The identical core structures of ertapenem, doripenem, and meropenem are likely responsible for the observed similarities in the kinetics with these carbapenems. The lack of a methyl group in the core structure of imipenem may provide a structural rationale for the increase in turnover of this carbapenem by the GES beta-lactamases. Our data also show that in GES-2 an extensive hydrogen-bonding network between the acyl-enzyme complex and the active site water attenuates activation of this water molecule, which results in poor deacylation by this enzyme. | ||
+ | |||
+ | Kinetic and Structural Requirements for Carbapenemase Activity in GES-Type beta-Lactamases.,Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB Biochemistry. 2014 Dec 22. PMID:25485972<ref>PMID:25485972</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 3ni9" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Beta-lactamase|Beta-lactamase]] | *[[Beta-lactamase|Beta-lactamase]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 08:16, 3 August 2017
GES-2 carbapenemase apo form
|