5l0r

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 5l0r is ON HOLD until Paper Publication
+
==human POGLUT1 in complex with Notch1 EGF12 and UDP==
 +
<StructureSection load='5l0r' size='340' side='right' caption='[[5l0r]], [[Resolution|resolution]] 1.50&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[5l0r]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5L0R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5L0R FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=UDP:URIDINE-5-DIPHOSPHATE'>UDP</scene></td></tr>
 +
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5l0s|5l0s]], [[5l0t|5l0t]], [[5l0u|5l0u]], [[5l0v|5l0v]]</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5l0r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5l0r OCA], [http://pdbe.org/5l0r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5l0r RCSB], [http://www.ebi.ac.uk/pdbsum/5l0r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5l0r ProSAT]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/PGLT1_HUMAN PGLT1_HUMAN]] Dowling-Degos disease. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Defects in NOTCH1 are a cause of aortic valve disease 1 (AOVD1) [MIM:[http://omim.org/entry/109730 109730]]. A common defect in the aortic valve in which two rather than three leaflets are present. It is often associated with aortic valve calcification and insufficiency. In extreme cases, the blood flow may be so restricted that the left ventricle fails to grow, resulting in hypoplastic left heart syndrome.<ref>PMID:16025100</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/PGLT1_HUMAN PGLT1_HUMAN]] Dual specificity glycosyltransferase that catalyzes the transfer of glucose and xylose from UDP-glucose and UDP-xylose, respectively, to a serine residue found in the consensus sequence of C-X-S-X-P-C (PubMed:21081508, PubMed:21490058, PubMed:21949356, PubMed:27807076). Specifically targets extracellular EGF repeats of protein such as CRB2, F7, F9 and NOTCH2 (PubMed:21081508, PubMed:21490058, PubMed:21949356, PubMed:27807076). Acts as a positive regulator of Notch signaling by mediating O-glucosylation of Notch, leading to regulate muscle development (PubMed:27807076). Notch glucosylation does not affect Notch ligand binding (PubMed:21490058). Required during early development to promote gastrulation: acts by mediating O-glucosylation of CRB2, which is required for CRB2 localization to the cell membrane (By similarity).[UniProtKB:Q8BYB9]<ref>PMID:21081508</ref> <ref>PMID:21490058</ref> <ref>PMID:21949356</ref> <ref>PMID:27807076</ref> [[http://www.uniprot.org/uniprot/NOTC1_HUMAN NOTC1_HUMAN]] Functions as a receptor for membrane-bound ligands Jagged1, Jagged2 and Delta1 to regulate cell-fate determination. Upon ligand activation through the released notch intracellular domain (NICD) it forms a transcriptional activator complex with RBPJ/RBPSUH and activates genes of the enhancer of split locus. Affects the implementation of differentiation, proliferation and apoptotic programs. May be important for normal lymphocyte function. In altered form, may contribute to transformation or progression in some T-cell neoplasms. Involved in the maturation of both CD4+ and CD8+ cells in the thymus. May be important for follicular differentiation and possibly cell fate selection within the follicle. During cerebellar development, may function as a receptor for neuronal DNER and may be involved in the differentiation of Bergmann glia. Represses neuronal and myogenic differentiation. May enhance HIF1A function by sequestering HIF1AN away from HIF1A (By similarity).
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Protein O-glucosyltransferase 1/Rumi-mediated glucosylation of Notch epidermal growth factor-like (EGF-like) domains plays an important role in Notch signaling. Protein O-glucosyltransferase 1 shows specificity for folded EGF-like domains, it can only glycosylate serine residues in the C1XSXPC2 motif, and it possesses an uncommon dual donor substrate specificity. Using several EGF-like domains and donor substrate analogs, we have determined the structures of human Protein O-glucosyltransferase 1 substrate/product complexes that provide mechanistic insight into the basis for these properties. Notably, we show that Protein O-glucosyltransferase 1's requirement for folded EGF-like domains also leads to its serine specificity and that two distinct local conformational states are likely responsible for its ability to transfer both glucose and xylose. We also show that Protein O-glucosyltransferase 1 possesses the potential to xylosylate a much broader range of EGF-like domain substrates than was previously thought. Finally, we show that Protein O-glucosyltransferase 1 has co-evolved with EGF-like domains of the type found in Notch.POGLUT1 is a protein-O-glucosyltransferase that transfers glucose and xylose to the EGF-like domains of Notch and other signaling receptors. Here the authors report the structure of human POGLUT1 in complexes with 3 different EGF-like domains and donor substrates and shed light on the enzyme's substrate specificity and catalytic mechanism.
-
Authors:
+
Structural basis of Notch O-glucosylation and O-xylosylation by mammalian protein-O-glucosyltransferase 1 (POGLUT1).,Li Z, Fischer M, Satkunarajah M, Zhou D, Withers SG, Rini JM Nat Commun. 2017 Aug 4;8(1):185. doi: 10.1038/s41467-017-00255-7. PMID:28775322<ref>PMID:28775322</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 5l0r" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Li, Z]]
 +
[[Category: Rini, J M]]
 +
[[Category: Transferase]]
 +
[[Category: Transferase glycosyltransferase gt-b glucosyltransferase]]

Revision as of 04:12, 30 August 2017

human POGLUT1 in complex with Notch1 EGF12 and UDP

5l0r, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools