5xtb
From Proteopedia
OCA (Talk | contribs)
(New page: ==Cryo-EM structure of human respiratory complex I matrix arm== <StructureSection load='5xtb' size='340' side='right' caption='5xtb, resolution 3.40Å' scene=''> =...)
Next diff →
Revision as of 15:06, 5 September 2017
proteopedia linkproteopedia linkCryo-EM structure of human respiratory complex I matrix arm
Structural highlights
Disease[NDUS4_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [NDUS6_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUS8_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [NDUV1_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [NDUAD_HUMAN] Papillary or follicular thyroid carcinoma. Disease susceptibility is associated with variations affecting the gene represented in this entry. Defects in NDUFA13 are a cause of a mitochondrial complex I deficiency characterized by early onset hypotonia, dyskinesia and sensorial deficiencies, as well as a severe optic neuropathy.[1] [NDUAC_HUMAN] The disease is caused by mutations affecting the gene represented in this entry. [NDUS7_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. [NDUA9_HUMAN] Isolated NADH-CoQ reductase deficiency. The disease is caused by mutations affecting the gene represented in this entry. [NDUS1_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. The disease is caused by mutations affecting the gene represented in this entry. [NDUV2_HUMAN] Isolated NADH-CoQ reductase deficiency. [NDUS3_HUMAN] Isolated NADH-CoQ reductase deficiency;Leigh syndrome with leukodystrophy. Function[NDUS4_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[2] [3] [NDUA5_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[4] [NDUS6_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[5] [NDUS8_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. [NDUV1_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [NDUAD_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis (PubMed:27626371). Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (PubMed:27626371). Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in CARD15-mediated innate mucosal responses and serve to regulate intestinal epithelial cell responses to microbes (PubMed:15753091).[6] [7] [8] [9] [NDUAC_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[10] [ACPM_HUMAN] Carrier of the growing fatty acid chain in fatty acid biosynthesis in mitochondria. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain (By similarity). [NDUS7_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[11] [NDUA9_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[12] [13] [NDUS1_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. [NDUV2_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [NDUS3_HUMAN] Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). [NDUA7_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[14] [NDUA6_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.[15] [NDUV3_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I.[16] [NDUA2_HUMAN] Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. References
| ||||||||||||||||||
