1x7q
From Proteopedia
Line 4: | Line 4: | ||
|PDB= 1x7q |SIZE=350|CAPTION= <scene name='initialview01'>1x7q</scene>, resolution 1.45Å | |PDB= 1x7q |SIZE=350|CAPTION= <scene name='initialview01'>1x7q</scene>, resolution 1.45Å | ||
|SITE= | |SITE= | ||
- | |LIGAND= <scene name='pdbligand= | + | |LIGAND= <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene> |
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
+ | |DOMAIN= | ||
+ | |RELATEDENTRY= | ||
+ | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1x7q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1x7q OCA], [http://www.ebi.ac.uk/pdbsum/1x7q PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1x7q RCSB]</span> | ||
}} | }} | ||
Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove, the HLA-A*1101-SNP362-370 complex is very similar to other known structures of HLA-A*1101 and HLA-A*6801. The SNP362-370 peptide is held in place by 17 hydrogen bonds to the alpha-chain residues and by nine water molecules which are also tightly bound in the peptide-binding groove. Thr6 of the peptide (Thr6p) does not make efficient use of the middle (E) pocket. For vaccine development, there seems to be a potential for optimization targeted at this position. All residues except Thr2p and Lys9p are accessible for T-cell recognition. | The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove, the HLA-A*1101-SNP362-370 complex is very similar to other known structures of HLA-A*1101 and HLA-A*6801. The SNP362-370 peptide is held in place by 17 hydrogen bonds to the alpha-chain residues and by nine water molecules which are also tightly bound in the peptide-binding groove. Thr6 of the peptide (Thr6p) does not make efficient use of the middle (E) pocket. For vaccine development, there seems to be a potential for optimization targeted at this position. All residues except Thr2p and Lys9p are accessible for T-cell recognition. | ||
- | |||
- | ==Disease== | ||
- | Known diseases associated with this structure: Abacavir hypersensitivity, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=142800 142800]], Ankylosing spondylitis, susceptibility to, 1 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=142800 142800]], Hypoproteinemia, hypercatabolic OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=109700 109700]], Stevens-Johnson syndrome, susceptibility to OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=142800 142800]] | ||
==About this Structure== | ==About this Structure== | ||
Line 29: | Line 29: | ||
[[Category: Gajhede, M.]] | [[Category: Gajhede, M.]] | ||
[[Category: Kastrup, J S.]] | [[Category: Kastrup, J S.]] | ||
- | [[Category: GOL]] | ||
- | [[Category: SO4]] | ||
[[Category: hla]] | [[Category: hla]] | ||
[[Category: human leukocyte antigen]] | [[Category: human leukocyte antigen]] | ||
Line 39: | Line 37: | ||
[[Category: sar]] | [[Category: sar]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 00:45:47 2008'' |
Revision as of 21:45, 30 March 2008
| |||||||
, resolution 1.45Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | , | ||||||
Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
Coordinates: | save as pdb, mmCIF, xml |
Crystal structure of HLA-A*1101 with sars nucleocapsid peptide
Overview
The structure of the human MHC-I molecule HLA-A*1101 in complex with a nonameric peptide (KTFPPTEPK) has been determined by X-ray crystallography to 1.45 A resolution. The peptide is derived from the SARS-CoV nucleocapsid protein positions 362-370 (SNP362-370). It is conserved in all known isolates of SARS-CoV and has been verified by in vitro peptide-binding studies to be a good to intermediate binder to HLA-A*0301 and HLA-A*1101, with IC50 values of 70 and 186 nM, respectively [Sylvester-Hvid et al. (2004), Tissue Antigens, 63, 395-400]. In terms of the residues lining the peptide-binding groove, the HLA-A*1101-SNP362-370 complex is very similar to other known structures of HLA-A*1101 and HLA-A*6801. The SNP362-370 peptide is held in place by 17 hydrogen bonds to the alpha-chain residues and by nine water molecules which are also tightly bound in the peptide-binding groove. Thr6 of the peptide (Thr6p) does not make efficient use of the middle (E) pocket. For vaccine development, there seems to be a potential for optimization targeted at this position. All residues except Thr2p and Lys9p are accessible for T-cell recognition.
About this Structure
1X7Q is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.
Reference
High-resolution structure of HLA-A*1101 in complex with SARS nucleocapsid peptide., Blicher T, Kastrup JS, Buus S, Gajhede M, Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1031-40. Epub 2005, Jul 20. PMID:16041067
Page seeded by OCA on Mon Mar 31 00:45:47 2008