1xrz

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
|PDB= 1xrz |SIZE=350|CAPTION= <scene name='initialview01'>1xrz</scene>
|PDB= 1xrz |SIZE=350|CAPTION= <scene name='initialview01'>1xrz</scene>
|SITE=
|SITE=
-
|LIGAND= <scene name='pdbligand=ZN:ZINC ION'>ZN</scene>
+
|LIGAND= <scene name='pdbligand=ALC:2-AMINO-3-CYCLOHEXYL-PROPIONIC+ACID'>ALC</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene>
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=[[5znf|5ZNF]], [[1kls|1KLS]], [[1klr|1KLR]]
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1xrz FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xrz OCA], [http://www.ebi.ac.uk/pdbsum/1xrz PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1xrz RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
The classical Zn finger contains a phenylalanine at the crux of its three architectural elements: a beta-hairpin, an alpha-helix, and a Zn(2+)-binding site. Surprisingly, phenylalanine is not required for high-affinity Zn2+ binding, but instead contributes to the specification of a precise DNA-binding surface. Substitution of phenylalanine by leucine leads to a floppy but native-like structure whose Zn affinity is maintained by marked entropy-enthalpy compensation (DeltaDeltaH -8.3 kcal/mol and -TDeltaDeltaS 7.7 kcal/mol). Phenylalanine and leucine differ in shape, size, and aromaticity. To distinguish which features correlate with dynamic stability, we have investigated a nonstandard finger containing cyclohexanylalanine at this site. The structure of the nonstandard finger is similar to that of the native domain. The cyclohexanyl ring assumes a chair conformation, and conformational fluctuations characteristic of the leucine variant are damped. Although the nonstandard finger exhibits a lower affinity for Zn2+ than does the native domain (DeltaDeltaG -1.2 kcal/mol), leucine-associated perturbations in enthalpy and entropy are almost completely attenuated (DeltaDeltaH -0.7 kcal/mol and -TDeltaDeltaS -0.5 kcal/mol). Strikingly, global changes in entropy (as inferred from calorimetry) are in each case opposite in sign from changes in configurational entropy (as inferred from NMR). This seeming paradox suggests that enthalpy-entropy compensation is dominated by solvent reorganization rather than nominal molecular properties. Together, these results demonstrate that dynamic and thermodynamic perturbations correlate with formation or repair of a solvated packing defect rather than type of physical interaction (aromatic or aliphatic) within the core.
The classical Zn finger contains a phenylalanine at the crux of its three architectural elements: a beta-hairpin, an alpha-helix, and a Zn(2+)-binding site. Surprisingly, phenylalanine is not required for high-affinity Zn2+ binding, but instead contributes to the specification of a precise DNA-binding surface. Substitution of phenylalanine by leucine leads to a floppy but native-like structure whose Zn affinity is maintained by marked entropy-enthalpy compensation (DeltaDeltaH -8.3 kcal/mol and -TDeltaDeltaS 7.7 kcal/mol). Phenylalanine and leucine differ in shape, size, and aromaticity. To distinguish which features correlate with dynamic stability, we have investigated a nonstandard finger containing cyclohexanylalanine at this site. The structure of the nonstandard finger is similar to that of the native domain. The cyclohexanyl ring assumes a chair conformation, and conformational fluctuations characteristic of the leucine variant are damped. Although the nonstandard finger exhibits a lower affinity for Zn2+ than does the native domain (DeltaDeltaG -1.2 kcal/mol), leucine-associated perturbations in enthalpy and entropy are almost completely attenuated (DeltaDeltaH -0.7 kcal/mol and -TDeltaDeltaS -0.5 kcal/mol). Strikingly, global changes in entropy (as inferred from calorimetry) are in each case opposite in sign from changes in configurational entropy (as inferred from NMR). This seeming paradox suggests that enthalpy-entropy compensation is dominated by solvent reorganization rather than nominal molecular properties. Together, these results demonstrate that dynamic and thermodynamic perturbations correlate with formation or repair of a solvated packing defect rather than type of physical interaction (aromatic or aliphatic) within the core.
- 
-
==Disease==
 
-
Known disease associated with this structure: Spastic paraplegia 33 OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=610243 610243]]
 
==About this Structure==
==About this Structure==
Line 30: Line 30:
[[Category: Singh, R.]]
[[Category: Singh, R.]]
[[Category: Weiss, M A.]]
[[Category: Weiss, M A.]]
-
[[Category: ZN]]
 
[[Category: cyclohexanylalanine]]
[[Category: cyclohexanylalanine]]
[[Category: zinc finger]]
[[Category: zinc finger]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 15:13:49 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 00:53:50 2008''

Revision as of 21:53, 30 March 2008


PDB ID 1xrz

Drag the structure with the mouse to rotate
Ligands: ,
Related: 5ZNF, 1KLS, 1KLR


Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



NMR Structure of a Zinc Finger with Cyclohexanylalanine Substituted for the Central Aromatic Residue


Overview

The classical Zn finger contains a phenylalanine at the crux of its three architectural elements: a beta-hairpin, an alpha-helix, and a Zn(2+)-binding site. Surprisingly, phenylalanine is not required for high-affinity Zn2+ binding, but instead contributes to the specification of a precise DNA-binding surface. Substitution of phenylalanine by leucine leads to a floppy but native-like structure whose Zn affinity is maintained by marked entropy-enthalpy compensation (DeltaDeltaH -8.3 kcal/mol and -TDeltaDeltaS 7.7 kcal/mol). Phenylalanine and leucine differ in shape, size, and aromaticity. To distinguish which features correlate with dynamic stability, we have investigated a nonstandard finger containing cyclohexanylalanine at this site. The structure of the nonstandard finger is similar to that of the native domain. The cyclohexanyl ring assumes a chair conformation, and conformational fluctuations characteristic of the leucine variant are damped. Although the nonstandard finger exhibits a lower affinity for Zn2+ than does the native domain (DeltaDeltaG -1.2 kcal/mol), leucine-associated perturbations in enthalpy and entropy are almost completely attenuated (DeltaDeltaH -0.7 kcal/mol and -TDeltaDeltaS -0.5 kcal/mol). Strikingly, global changes in entropy (as inferred from calorimetry) are in each case opposite in sign from changes in configurational entropy (as inferred from NMR). This seeming paradox suggests that enthalpy-entropy compensation is dominated by solvent reorganization rather than nominal molecular properties. Together, these results demonstrate that dynamic and thermodynamic perturbations correlate with formation or repair of a solvated packing defect rather than type of physical interaction (aromatic or aliphatic) within the core.

About this Structure

1XRZ is a Single protein structure of sequence from [1]. Full crystallographic information is available from OCA.

Reference

Solvation and the hidden thermodynamics of a zinc finger probed by nonstandard repair of a protein crevice., Lachenmann MJ, Ladbury JE, Qian X, Huang K, Singh R, Weiss MA, Protein Sci. 2004 Dec;13(12):3115-26. PMID:15557258

Page seeded by OCA on Mon Mar 31 00:53:50 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools