| Structural highlights
5uo8 is a 4 chain structure. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , , |
Related: | 5unr, 5unu, 5unx, 5unw, 5uo1, 5uny, 5uo3, 5uo5, 5uo4, 5uo6, 5uo7, 5uo2, 5uns, 5unz, 5uo0, 5unt, 5unv, 5uod, 5uo9, 5uoa, 5uob, 5uoc |
Activity: | Nitric-oxide synthase (NADPH dependent), with EC number 1.14.13.39 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[NOS3_HUMAN] Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.[1] Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.[2]
Publication Abstract from PubMed
Neuronal nitric oxide synthase (nNOS) inhibition is a promising strategy to treat neurodegenerative disorders, but the development of nNOS inhibitors is often hindered by poor pharmacokinetics. We previously developed a class of membrane-permeable 2-aminoquinoline inhibitors and later rearranged the scaffold to decrease off-target binding. However, the resulting compounds had decreased permeability, low human nNOS activity, and low selectivity versus human eNOS. In this study, 5-substituted phenyl ether-linked aminoquinolines and derivatives were synthesized and assayed against purified NOS isoforms. 5-Cyano compounds are especially potent and selective rat and human nNOS inhibitors. Activity and selectivity are mediated by the binding of the cyano group to a new auxiliary pocket in nNOS. Potency was enhanced by methylation of the quinoline and by introduction of simple chiral moieties, resulting in a combination of hydrophobic and auxiliary pocket effects that yielded high ( approximately 500-fold) n/e selectivity. Importantly, the Caco-2 assay also revealed improved membrane permeability over previous compounds.
Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors.,Cinelli MA, Li H, Chreifi G, Poulos TL, Silverman RB J Med Chem. 2017 Apr 19. doi: 10.1021/acs.jmedchem.7b00259. PMID:28422508[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
- ↑ Lorenz M, Hewing B, Hui J, Zepp A, Baumann G, Bindereif A, Stangl V, Stangl K. Alternative splicing in intron 13 of the human eNOS gene: a potential mechanism for regulating eNOS activity. FASEB J. 2007 May;21(7):1556-64. Epub 2007 Jan 30. PMID:17264164 doi:http://dx.doi.org/10.1096/fj.06-7434com
- ↑ Cinelli MA, Li H, Chreifi G, Poulos TL, Silverman RB. Nitrile in the Hole: Discovery of a Small Auxiliary Pocket in Neuronal Nitric Oxide Synthase Leading to the Development of Potent and Selective 2-Aminoquinoline Inhibitors. J Med Chem. 2017 Apr 19. doi: 10.1021/acs.jmedchem.7b00259. PMID:28422508 doi:http://dx.doi.org/10.1021/acs.jmedchem.7b00259
|