1z0q

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1z0q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1z0q OCA], [http://www.ebi.ac.uk/pdbsum/1z0q PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1z0q RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
Current views of the role of beta-amyloid (Abeta) peptide fibrils range from regarding them as the cause of Alzheimer's pathology to having a protective function. In the last few years, it has also been suggested that soluble oligomers might be the most important toxic species. In all cases, the study of the conformational properties of Abeta peptides in soluble form constitutes a basic approach to the design of molecules with "antiamyloid" activity. We have experimentally investigated the conformational path that can lead the Abeta-(1-42) peptide from the native state, which is represented by an alpha helix embedded in the membrane, to the final state in the amyloid fibrils, which is characterized by beta-sheet structures. The conformational steps were monitored by using CD and NMR spectroscopy in media of varying polarities. This was achieved by changing the composition of water and hexafluoroisopropanol (HFIP). In the presence of HFIP, beta conformations can be observed in solutions that have very high water content (up to 99 % water; v/v). These can be turned back to alpha helices simply by adding the appropriate amount of HFIP. The transition of Abeta-(1-42) from alpha to beta conformations occurs when the amount of water is higher than 80 % (v/v). The NMR structure solved in HFIP/H2O with high water content showed that, on going from very apolar to polar environments, the long N-terminal helix is essentially retained, whereas the shorter C-terminal helix is lost. The complete conformational path was investigated in detail with the aid of molecular-dynamics simulations in explicit solvent, which led to the localization of residues that might seed beta conformations. The structures obtained might help to find regions that are more affected by environmental conditions in vivo. This could in turn aid the design of molecules able to inhibit fibril deposition or revert oligomerization processes.
Current views of the role of beta-amyloid (Abeta) peptide fibrils range from regarding them as the cause of Alzheimer's pathology to having a protective function. In the last few years, it has also been suggested that soluble oligomers might be the most important toxic species. In all cases, the study of the conformational properties of Abeta peptides in soluble form constitutes a basic approach to the design of molecules with "antiamyloid" activity. We have experimentally investigated the conformational path that can lead the Abeta-(1-42) peptide from the native state, which is represented by an alpha helix embedded in the membrane, to the final state in the amyloid fibrils, which is characterized by beta-sheet structures. The conformational steps were monitored by using CD and NMR spectroscopy in media of varying polarities. This was achieved by changing the composition of water and hexafluoroisopropanol (HFIP). In the presence of HFIP, beta conformations can be observed in solutions that have very high water content (up to 99 % water; v/v). These can be turned back to alpha helices simply by adding the appropriate amount of HFIP. The transition of Abeta-(1-42) from alpha to beta conformations occurs when the amount of water is higher than 80 % (v/v). The NMR structure solved in HFIP/H2O with high water content showed that, on going from very apolar to polar environments, the long N-terminal helix is essentially retained, whereas the shorter C-terminal helix is lost. The complete conformational path was investigated in detail with the aid of molecular-dynamics simulations in explicit solvent, which led to the localization of residues that might seed beta conformations. The structures obtained might help to find regions that are more affected by environmental conditions in vivo. This could in turn aid the design of molecules able to inhibit fibril deposition or revert oligomerization processes.
- 
-
==Disease==
 
-
Known diseases associated with this structure: Alzheimer disease-1, APP-related OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104760 104760]], Amyloidosis, cerebroarterial, Dutch type OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104760 104760]], Amyloidosis, cerebroarterial, Iowa type OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=104760 104760]], Blood group, P system OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=607922 607922]]
 
==About this Structure==
==About this Structure==
Line 39: Line 39:
[[Category: nmr]]
[[Category: nmr]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 15:29:55 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Mon Mar 31 01:27:23 2008''

Revision as of 22:27, 30 March 2008


PDB ID 1z0q

Drag the structure with the mouse to rotate
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



Aqueous Solution Structure of the Alzheimer's Disease Abeta Peptide (1-42)


Overview

Current views of the role of beta-amyloid (Abeta) peptide fibrils range from regarding them as the cause of Alzheimer's pathology to having a protective function. In the last few years, it has also been suggested that soluble oligomers might be the most important toxic species. In all cases, the study of the conformational properties of Abeta peptides in soluble form constitutes a basic approach to the design of molecules with "antiamyloid" activity. We have experimentally investigated the conformational path that can lead the Abeta-(1-42) peptide from the native state, which is represented by an alpha helix embedded in the membrane, to the final state in the amyloid fibrils, which is characterized by beta-sheet structures. The conformational steps were monitored by using CD and NMR spectroscopy in media of varying polarities. This was achieved by changing the composition of water and hexafluoroisopropanol (HFIP). In the presence of HFIP, beta conformations can be observed in solutions that have very high water content (up to 99 % water; v/v). These can be turned back to alpha helices simply by adding the appropriate amount of HFIP. The transition of Abeta-(1-42) from alpha to beta conformations occurs when the amount of water is higher than 80 % (v/v). The NMR structure solved in HFIP/H2O with high water content showed that, on going from very apolar to polar environments, the long N-terminal helix is essentially retained, whereas the shorter C-terminal helix is lost. The complete conformational path was investigated in detail with the aid of molecular-dynamics simulations in explicit solvent, which led to the localization of residues that might seed beta conformations. The structures obtained might help to find regions that are more affected by environmental conditions in vivo. This could in turn aid the design of molecules able to inhibit fibril deposition or revert oligomerization processes.

About this Structure

1Z0Q is a Single protein structure of sequence from [1]. Full crystallographic information is available from OCA.

Reference

The alpha-to-beta conformational transition of Alzheimer's Abeta-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding., Tomaselli S, Esposito V, Vangone P, van Nuland NA, Bonvin AM, Guerrini R, Tancredi T, Temussi PA, Picone D, Chembiochem. 2006 Feb;7(2):257-67. PMID:16444756

Page seeded by OCA on Mon Mar 31 01:27:23 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools