5xfc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 13: Line 13:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/PMGT1_HUMAN PMGT1_HUMAN]] Participates in O-mannosyl glycosylation. May be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. Is specific for alpha linked terminal mannose and does not have MGAT3, MGAT4, MGAT5, MGAT7 or MGAT8 activity.<ref>PMID:11709191</ref>
[[http://www.uniprot.org/uniprot/PMGT1_HUMAN PMGT1_HUMAN]] Participates in O-mannosyl glycosylation. May be responsible for the synthesis of the GlcNAc(beta1-2)Man(alpha1-)O-Ser/Thr moiety on alpha-dystroglycan and other O-mannosylated proteins. Is specific for alpha linked terminal mannose and does not have MGAT3, MGAT4, MGAT5, MGAT7 or MGAT8 activity.<ref>PMID:11709191</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Serial femtosecond crystallography (SFX) using X-ray free-electron lasers (XFELs) holds enormous potential for the structure determination of proteins for which it is difficult to produce large and high-quality crystals. SFX has been applied to various systems, but rarely to proteins that have previously unknown structures. Consequently, the majority of previously obtained SFX structures have been solved by the molecular replacement method. To facilitate protein structure determination by SFX, it is essential to establish phasing methods that work efficiently for SFX. Here, selenomethionine derivatization and mercury soaking have been investigated for SFX experiments using the high-energy XFEL at the SPring-8 Angstrom Compact Free-Electron Laser (SACLA), Hyogo, Japan. Three successful cases are reported of single-wavelength anomalous diffraction (SAD) phasing using X-rays of less than 1 A wavelength with reasonable numbers of diffraction patterns (13 000, 60 000 and 11 000). It is demonstrated that the combination of high-energy X-rays from an XFEL and commonly used heavy-atom incorporation techniques will enable routine de novo structural determination of biomacromolecules.
 +
 +
Experimental phase determination with selenomethionine or mercury-derivatization in serial femtosecond crystallography.,Yamashita K, Kuwabara N, Nakane T, Murai T, Mizohata E, Sugahara M, Pan D, Masuda T, Suzuki M, Sato T, Kodan A, Yamaguchi T, Nango E, Tanaka T, Tono K, Joti Y, Kameshima T, Hatsui T, Yabashi M, Manya H, Endo T, Kato R, Senda T, Kato H, Iwata S, Ago H, Yamamoto M, Yumoto F, Nakatsu T IUCrJ. 2017 Aug 8;4(Pt 5):639-647. doi: 10.1107/S2052252517008557. eCollection, 2017 Sep 1. PMID:28989719<ref>PMID:28989719</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5xfc" style="background-color:#fffaf0;"></div>
== References ==
== References ==
<references/>
<references/>

Revision as of 07:04, 25 October 2017

Serial femtosecond X-ray structure of a stem domain of human O-mannose beta-1,2-N-acetylglucosaminyltransferase solved by Se-SAD using XFEL (refined against 13,000 patterns)

5xfc, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools