| Structural highlights
4iij is a 6 chain structure with sequence from Bos taurus, Buffalo rat and Chick. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , , , , |
Related: | 4i4t, 4i50, 4i55, 4ihj |
Gene: | Stmn4 (Buffalo rat), TTL (CHICK) |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[TBA1B_BOVIN] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [STMN4_RAT] Exhibits microtubule-destabilizing activity.[1] [2] [3] [TBB2B_BOVIN] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity).
Publication Abstract from PubMed
Tubulin tyrosine ligase (TTL) catalyzes the post-translational retyrosination of detyrosinated alpha-tubulin. Despite the indispensable role of TTL in cell and organism development, its molecular mechanism of action is poorly understood. By solving crystal structures of TTL in complex with tubulin, we here demonstrate that TTL binds to the alpha and beta subunits of tubulin and recognizes the curved conformation of the dimer. Biochemical and cellular assays revealed that specific tubulin dimer recognition controls the activity of the enzyme, and as a consequence, neuronal development. The TTL-tubulin structure further illustrates how the enzyme binds the functionally crucial C-terminal tail sequence of alpha-tubulin and how this interaction catalyzes the tyrosination reaction. It also reveals how TTL discriminates between alpha- and beta-tubulin, and between different post-translationally modified forms of alpha-tubulin. Together, our data suggest that TTL has specifically evolved to recognize and modify tubulin, thus highlighting a fundamental role of the evolutionary conserved tubulin tyrosination cycle in regulating the microtubule cytoskeleton.
Structural basis of tubulin tyrosination by tubulin tyrosine ligase.,Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO J Cell Biol. 2013 Feb 4;200(3):259-70. doi: 10.1083/jcb.201211017. Epub 2013 Jan , 28. PMID:23358242[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Nakao C, Itoh TJ, Hotani H, Mori N. Modulation of the stathmin-like microtubule destabilizing activity of RB3, a neuron-specific member of the SCG10 family, by its N-terminal domain. J Biol Chem. 2004 May 28;279(22):23014-21. Epub 2004 Mar 22. PMID:15039434 doi:http://dx.doi.org/10.1074/jbc.M313693200
- ↑ Gavet O, El Messari S, Ozon S, Sobel A. Regulation and subcellular localization of the microtubule-destabilizing stathmin family phosphoproteins in cortical neurons. J Neurosci Res. 2002 Jun 1;68(5):535-50. PMID:12111843 doi:http://dx.doi.org/10.1002/jnr.10234
- ↑ Ravelli RB, Gigant B, Curmi PA, Jourdain I, Lachkar S, Sobel A, Knossow M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature. 2004 Mar 11;428(6979):198-202. PMID:15014504 doi:http://dx.doi.org/10.1038/nature02393
- ↑ Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D, Wieser M, Jaussi R, Hoogenraad CC, Kammerer RA, Janke C, Steinmetz MO. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J Cell Biol. 2013 Feb 4;200(3):259-70. doi: 10.1083/jcb.201211017. Epub 2013 Jan , 28. PMID:23358242 doi:http://dx.doi.org/10.1083/jcb.201211017
|