Structural highlights
Publication Abstract from PubMed
We introduce a method for identifying elements of a protein structure that can be shuffled to make chimeric proteins from two or more homologous parents. Formulating recombination as a graph-partitioning problem allows us to identify noncontiguous segments of the sequence that should be inherited together in the progeny proteins. We demonstrate this noncontiguous recombination approach by constructing a chimera of beta-glucosidases from two different kingdoms of life. Although the protein's alpha-beta barrel fold has no obvious subdomains for recombination, noncontiguous SCHEMA recombination generated a functional chimera that takes approximately half its structure from each parent. The X-ray crystal structure shows that the structural blocks that make up the chimera maintain the backbone conformations found in their respective parental structures. Although the chimera has lower beta-glucosidase activity than the parent enzymes, the activity was easily recovered by directed evolution. This simple method, which does not rely on detailed atomic models, can be used to design chimeras that take structural, and functional, elements from distantly-related proteins.
Chimeragenesis of distantly-related proteins by noncontiguous recombination.,Smith MA, Romero PA, Wu T, Brustad EM, Arnold FH Protein Sci. 2012 Dec 6. doi: 10.1002/pro.2202. PMID:23225662[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Smith MA, Romero PA, Wu T, Brustad EM, Arnold FH. Chimeragenesis of distantly-related proteins by noncontiguous recombination. Protein Sci. 2012 Dec 6. doi: 10.1002/pro.2202. PMID:23225662 doi:10.1002/pro.2202