5gma
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | '''Unreleased structure''' | ||
- | + | ==Crystal structure of the P228A variant of Thermotoga maritima acetyl esterase== | |
+ | <StructureSection load='5gma' size='340' side='right' caption='[[5gma]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[5gma]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Thema Thema]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5GMA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5GMA FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5fdf|5fdf]], [[5jib|5jib]], [[5hfn|5hfn]]</td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">axeA, TM_0077 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=243274 THEMA])</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5gma FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5gma OCA], [http://pdbe.org/5gma PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5gma RCSB], [http://www.ebi.ac.uk/pdbsum/5gma PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5gma ProSAT]</span></td></tr> | ||
+ | </table> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/CAH_THEMA CAH_THEMA]] Esterase that removes acetyl groups from a number of O-acetylated small substrates, such as acetylated xylose, short xylo-oligosaccharides and cephalosporin C. Has no activity towards polymeric acetylated xylan, 4-methylumbelliferyl acetate or alpha-naphthyl acetate. Able to catalyze rapid hydrolysis of a range of substrates preferably with acetate groups, independent of the alcohol moiety. Exhibits a narrow selectivity for short chain acyl esters (C2-C3). Displays broad substrate specificity by hydrolyzing acetate at 2, 3, and 4 positions of 4-nitrophenyl-beta-D-xylopyranoside (pNP-Xyl) with similar efficiency. Cannot cleave amide linkages.<ref>PMID:21255309</ref> <ref>PMID:22411095</ref> <ref>PMID:22659119</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | A conserved cis proline residue located in the active site of Thermotoga maritima acetyl esterase (TmAcE) from the carbohydrate esterase family 7 (CE7) has been substituted by alanine. The residue was known to play a crucial role in determining the catalytic properties of the enzyme. To elucidate the structural role of the residue, the crystal structure of the Pro228Ala variant (TmAcEP228A ) was determined at 2.1 A resolution. The replacement does not affect the overall secondary, tertiary, and quaternary structures and moderately decreases the thermal stability. However, the wild type cis conformation of the 227-228 peptide bond adopts a trans conformation in the variant. Other conformational changes in the tertiary structure are restricted to residues 222-226, preceding this peptide bond and are located away from the active site. Overall, the results suggest that the conserved proline residue is responsible for the cis conformation of the peptide and shapes the geometry of the active site. Elimination of the pyrrolidine ring results in the loss of van der Waals and hydrophobic interactions with both the alcohol and acyl moeities of the ester substrate, leading to significant impairment of the activity and perturbation of substrate specificity. Furthermore, a cis-to-trans conformational change arising out of residue changes at this position may be associated with the evolution of divergent activity, specificity, and stability properties of members constituting the CE7 family. Proteins 2017; 85:694-708. (c) 2016 Wiley Periodicals, Inc. | ||
- | + | Structural role of a conserved active site cis proline in the Thermotoga maritima acetyl esterase from the carbohydrate esterase family 7.,Singh MK, Manoj N Proteins. 2017 Apr;85(4):694-708. doi: 10.1002/prot.25249. Epub 2017 Feb 6. PMID:28097692<ref>PMID:28097692</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | [[Category: | + | </div> |
+ | <div class="pdbe-citations 5gma" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Thema]] | ||
+ | [[Category: Manoj, N]] | ||
+ | [[Category: Carbohydrate metabolism]] | ||
+ | [[Category: Cephalosporin deacetylase]] | ||
+ | [[Category: Hydrolase]] | ||
+ | [[Category: Rossmann fold]] |
Revision as of 08:31, 16 November 2017
Crystal structure of the P228A variant of Thermotoga maritima acetyl esterase
|